• Title/Summary/Keyword: anthocyanin biosynthetic genes

Search Result 19, Processing Time 0.027 seconds

Light modulates the transcriptomic accumulation of anthocyanin biosynthetic pathway genes in red and white grapes

  • Puspa Raj Poudel ;Kazuya Koyama ;Nami Goto-Yamamoto
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.292-2999
    • /
    • 2022
  • Anthocyanin, an important component in the grape berry skin, strongly affects grape quality. The transcription factors VvMYBA1 and VvMYBA2 (VvMYBA1/2) control anthocyanin biosynthesis. In addition, cultivation and environmental factors, such as light, influence anthocyanin accumulation. The present study aimed to clarify the effect of shading (reduced light condition) on the transcriptomic regulation of anthocyanin biosynthesis using a red-wine grape cultivar, Vitis vinifera 'Pinot Noir', and its white mutant, 'Pinot Blanc', caused by the deletion of the red allele of VvMYBA1/2. The grape berry skins were analyzed for anthocyanin content and global gene transcription accumulation. The microarray data were later validated by quantitative real-time PCR. A decisive influence of VvMYBA1/2 on the expression of an anthocyanin-specific gene, UDP glucose: flavonoid 3-O-glucosyltransferase, was observed as expected. In contrast, upstream genes of the pathway, which are shared by other flavonoids, were also expressed in 'Pinot Blanc', and the mRNA levels of some of these genes decreased in both cultivars on shading. Thus, the involvement of light-sensitive transcription factor(s) other than VvMYBA1/2 was suggested for the expression control of the upstream genes of the anthocyanin biosynthetic pathway. Furthermore, it was suggested that the effects of these factors are different among isogenes.

Expression Analysis of Flower Color Related Genes in Spray-type 'ARTI-purple' Developed by Gamma-ray Mutagenesis (감마선 변이체 스프레이 국화 'ARTI-purple'의 화색 관련 유전자 발현 분석)

  • Sung, Sang Yeop;Lee, Yu-Mi;Kim, Sang Hoon;Ha, Bo-Keun;Kang, Si-Yong;Kim, Jin-Baek;Kim, Hong Gi;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • Anthocyanins are major plant pigment and produced through phenylpropanoid pathway. In this study, anthocyanin biosynthesis mechanisms of chrysanthemum flowers were studied using 'Argus' and flower color mutant 'ARTI-purple' which were induced by 40 Gy gamma irradiation ($Co^{60}$). And, three chrysanthemums, 'Ford', 'Yeonja' and 'Orando' were additionally used as the check varieties to understand the relationship between flower color and expression patterns of genes. The expression patterns of the anthocyanin biosynthetic genes were matched with the flower color of the check varieties. High anthocyanin concentration of 'Orando' showed the high expression of anthocyanin biosynthetic genes. In the white flower of 'Ford', expressions of CHI, DFR and ANS were not identified. Despite different flower color, 'Argus' and 'ARTI-purple' showed different expression patterns compared with the check varieties. From the dot blot analysis, we screened the seven genes showing the different expressions between 'Argus' and 'ARTI-purple'.

A Set of Anthocyanin Biosynthetic Genes are Differentially Expressed in Strawberry (Fragaria x ananassa cv Maehyang) during the Fruit Development Process (매향 딸기로부터 anthocyanin 합성 유전자의 분리 및 과실발달 과정에서의 발현 분석)

  • Bae, Ki-Suk;Kih, Joon-Yeong;Pyee, Jae-Ho
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.234-240
    • /
    • 2008
  • Anthocyanin synthesis in strawberry (Fragaria x ananassa cv Maehyang) begins approximately 26 days postflowering and continued throughout fruit ripening. A set of cDNA clones encoding the anthocyanin biosynthetic enzymes were isolated from strawberry. A pair of primers were designed for polymerase chain reaction (PCR) through the comparison of the nucleotide sequences of homologous genes from diverse plants. Reverse transcriptase-PCRs were performed using cDNA synthesized from ripe fruit total RNA and the primers corresponding to each gene. Eight genes of the anthocyanin pathway were cloned and confirmed by sequencing to code for phenylalanine ammonia lyase (PAL), 4-cummarate CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidine synthase (ANS), UDP-glucose:flavonoid-3-O-glucosyl-transferase (UFGT). Northern analyses showed that the corresponding genes were differentially expressed during the fruit development process. All genes except PAL were predominantly expressed in fruit. Expression of PAL, DFR and ANS was detected 10 days postflowering at the early stage of fruit development, declined for a while and sharply increased 22 days postflowering then showed a peak 34 days postflowering. The other genes, however, were not expressed up to 22 or 30 days postflowering when the initial fruit ripening events occur at the time of initiation of anthocyanin accumulation. The onset of anthocyanin synthesis in ripening strawberry coincides with a coordinated induction of the anthocyanin pathway genes, suggesting the involvement of regulatory genes. We propose that at least two different regulatory mechanisms playa role in the biosynthesis of anthocyanin during color development of strawberry.

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Physiological Responses and Fruit Quality Changes of 'Fuji' Apple under the High Night Temperature (야간 고온에 의한 사과 후지 품종의 생리반응 및 과실품질 변화)

  • Ryu, Suhyun;Kwon, YongHee;Do, Kyeong Ran;Han, Jeom Hwa;Han, Hyun Hee;Lee, Han Chan
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.264-270
    • /
    • 2015
  • Tropical night phenomenon has been increasing due to global warming recently, it is expected that fruit quality of apples will decrease due to elevated night temperature condition. In the present study, fruit quality at maturity, periodic anthocyanin biosynthetic gene expression and sugar contents in leaves and fruit flesh were investigated to establish the physiological responses of 'Fuji' apples under high night temperature. The night temperature were treated with such as ambient (control), ambient $-4^{\circ}C$, and ambient $+4^{\circ}C$. After the treatment, high night temperature didn't affect fruit diameter, weight, and soluble sugar contents. Coloration of ambient $+4^{\circ}C$ was poor than that of control, however there was no significant difference between these genes expression of control and that of ambient $+4^{\circ}C$ treatment in the late coloration season. Increase of sorbitol and glucose contents at ambient $+4^{\circ}C$ in leaves were smaller than those at control, and then sorbitol and sucrose contents in fruit flesh at ambient $+4^{\circ}C$ were smaller than those at control. The cross section of leaves showed that there were no differences with the structure of parenchyma and epidermis tissues between the treatments, but starch granules in the palisade parenchyma cells decreased in high night temperature treatments. Consequently, high night temperature didn't affect the fruit quality, but changed sugar contents in leaves and fruit flesh, and suppressed coloration regardless of anthocyanin biosynthetic gene expression.

Tissue Specific Gene Regulation of The Anthocyanin Synthesis Regulator Gene R in Maize (옥수수의 색소 발현에 관련된 조직 특이성 조절유전자 R locus에 관하여)

  • 임용표
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.323-347
    • /
    • 1987
  • The R locus of maize in one of several genes that regulate the anthocyanin pigments throughout the body of the plant and seed. The R gene product may regulate pigment deposition by controlling the expression of the flavonoid biosynthetic gene pathway in a tissue-specific manner. To understand the basis for tissue specific regulation and allelic variation at R, the molecular study has been done by cloning a portion of the R complex by transposon tagging with Ac. R specific probe were cloned from the R-nj mutant induced by Ac insertion mutagenesis. From southern analysis of R-r complex using the R-nj probe, the structure of R-r was proposed that R-r containes the three elements, (P)(Q)(S). These elements may organize as the inversion triplication model which (S) sequence was inverted in relation to (P) and (Q). The R-sc derivated from R-mb or R-nj was cloned with R-nj probe, and molecular genetical data showed that R-sc containes tissue specific and tissue nonspecific area, and the sequencing of R-sc are progressed now.

  • PDF

Skin Coloration and Endogenous Hormonal Changes of 'Kyoho' Grape by High Temperature at Veraison (변색기 고온에 의한 포도 '거봉'의 과피 착색 및 내생 호르몬 변화)

  • Ryu, Suhyun;Cho, Jung-Gun;Jeong, Jae Hoon;Lee, Seul-Ki;Han, Jeom Hwa;Kim, Myung-Su
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.234-242
    • /
    • 2019
  • We analyzed the anthocyanin accumulation, abscisic acid (ABA), gibberellic acid (GA) contents and metabolic genes expression in berry skins under high temperature (High T) at veraison, in order to investigate the cause of bad coloration of 'Kyoho' grape due to High T in summer season. The coloration of 'Kyoho' grapes was stopped by High T for 10 days from veraison, and the fruit quality was not affected except skin color. Total anthocyanin of skins was decreased by High T treatment and malvidin and peonidin were decreased compared to control. In berry skins, ABA content did not decrease by High T treatment, but it was rather higher than that of control. GA content was increased about two times compared to the control after 10 days of High T treatment, which caused decreased ratio of ABA/GA. Analysis of expression of anthocyanin biosynthetic genes showed that the early biosynthetic genes were not affected by High T and the expression of UFGT was decreased by temperature treatment. ABA biosynthetic gene expressions were not affected by High T and the expression of GA20ox1 and GA2ox1/2, which are known to regulate the biosynthesis and inactivation of GA, were increased and decreased by High T, respectively. Therefore, the bad coloration of 'Kyoho' grapes under the High T at veraison was due to inhibition of anthocyanin biosynthesis of skin, and it was suggested that the anthocyanin biosynthesis was controlled by the ratio of ABA and GA rather than ABA content.

Expression Analysis of Anthocyanin Biosynthetic Genes of Tassel and Silks in Gwangpyeongok and Dacheongok (광평옥과 다청옥의 수이삭과 수염에서 안토시아닌 생합성 유전자 발현 분석)

  • Go, Young Sam;Bae, Hwan Hee;Choi, Yu Chan;Son, Jae Han;Ha, Jun Young;Shin, Seong Hyu;Jung, Tae Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.240-247
    • /
    • 2021
  • Anthocyanins are known to be involved in various functions such as antioxidant and antibacterial activities in plants. Although studies on anthocyanins in corn have been conducted recently, basic research related to anthocyanin biosynthesis is insufficient. In this study, we examined the molecular biological and physicochemical properties related to anthocyanin biosynthesis in the tassel and silks of Gwangpyeongok and Dacheongok cultivars. Anthocyanins were not synthesized in either the tassel or silks in Gwangpyeongok, whereas were synthesized in both in Dacheongok. The total anthocyanin content was approximately 30 times higher in the tassel and silks of Dacheongok than in those of Gwangpyeongok. In addition, C-3-G was measured only in the tassel of Dacheongok, and C-3-G, Pg-3-G, and M-3-G were 45.2 times, 27.3 times, and 37.6 times higher, respectively, in the silks of Dacheongok than of Gwangpyeongok. Expression of F3'H, DFR, and GST genes decreased in the tassel, and that of F3'H and DFR genes decreased in the silks of Gwangpyeongok. It was further confirmed that transcription factor P1 and R1 regulate the expression of anthocyanin biosynthetic genes in the tassel and silks, respectively, in Gwangpyeongok. Linoleic acid (C18:2) decreased by 6.6% and 10.9%, and linolenic acid (C18:3) increased by 8.5% and 8.5%, in the tassel and silks, respectively, of Gwangpyeongok compared to those of Dacheongok. Palmitic acid (C16:0) increased by 4.1% and oleic acid (C18:1) decreased by 2.1% in the silks of Gwangpyeongok compared to that in Dacheongok. In addition, the total fatty acid content in the tassel and silks increased by 10.3% and 30.4%, respectively, in Gwangpyeongok compared to that in Dacheongok. However, no significant results were observed in the analysis of phytosterol components. These results may be utilized as useful resources for the development of functional corn containing a large amount of anthocyanins.