• 제목/요약/키워드: anterior interosseous nerve

검색결과 16건 처리시간 0.022초

압박성 신경병증 (Compression Neuropathy)

  • 김병성
    • 대한정형외과 초음파학회지
    • /
    • 제1권2호
    • /
    • pp.128-133
    • /
    • 2008
  • 신경 압박의 원인은 외부로부터 가해지는 것도 있고, 신체 내부 병리가 발생하여 신경 주행에 따라 발생할 수 있다. 주관절 이하부에서 압박성 신경병증으로 정중 신경, 척골 신경, 요골신경병증이 있다. 정중 신경은 굴곡 지대부위에서 수근관 증후군이 대표적이며, 모든 신경 포착 증후군 가운데 가장 흔하다. 그 외 주관절 부위에서 스트러더스 인대, 상완 이두근 건막, 회내근, 천수지 굴근 기시부 그리고 비정상 근육들에 의한 회내근 증후군과 전 골간 신경 증후군이 있다. 척골 신경은 스트러더스 궁, 내측 상과 후방의 주관, 척수근 굴근 두 기시부 사이의 건막 등에서 눌리는 주관 증후군과, 수근부에서 결절종, 유구골 갈고리 골절 그리고 혈관성으로 오는 척골 관 증후군이 있다. 요골 신경의 심부 분지가 회외근속을 지나면서 만들어지는 부위에서 눌리는 경우 요골 관 증후군이라고 한다. 치료는 초기에는 소염제나 야간부목, 스테로이드 주사와 같은 보존적 치료를 시행할 수 있으며, 이에 호전되지 않을 경우 전기적 검사나 영상 검사에서 이상이 나타나면 수술적 감압술을 시행하여야 한다.

  • PDF

족삼리 취혈방식 제안: 신경해부학적 특성을 기반으로 (Suggestion on Locating Method for ST36 Acupoint Based on Neuroanatomical Features)

  • 문희영;윤다은;류연희;이인선;도디창;포니치앙;채윤병
    • Korean Journal of Acupuncture
    • /
    • 제40권3호
    • /
    • pp.128-133
    • /
    • 2023
  • Objectives : There are many variations in the ST36 acupoint location. The purpose of this article is to suggest a method of locating the ST36 acupoint. Methods : Based on the available research and the neuroanatomical characteristics of the underlying acupoint, we summarized the proper procedure for finding the ST36 acupoint. Results : ST36 is 3 B-cun inferior to ST35 and is vertically situated on the line that connects ST35 and ST41. The ST36 acupoint corresponds to the deep peroneal nerve, which is situated in the tibialis anterior muscle's back. The neurovascular bundles that are located on the interosseous membrane between the interosseous crests of the tibia and fibula include the deep peroneal nerve, anterior tibial artery, and anterior tibial vein. According to both classical and modern literature, this acupoint can be found horizontally between the two muscles, tibialis anterior and extensor digitorum longus. Conclusions : Based on a review of the literature and neuroanatomical features, we suggest that ST36 can be positioned horizontally between tibialis anterior and extensor digitorum longus. Additional imaging studies and clinical proof are required to determine ST36 acupoint.

수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察) (Anatomy of Large Intestine Meridian Muscle in human)

  • 심영;박경식;이준무
    • Korean Journal of Acupuncture
    • /
    • 제19권1호
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

혈관부착 근위비골성장판 이식시 공여부 수술의 새로운 술식 (New Surgical Technique for Harvesting Proximal Fibular Epiphysis in Free Vascularized Epiphyseal Transplantation)

  • 정덕환
    • Archives of Reconstructive Microsurgery
    • /
    • 제5권1호
    • /
    • pp.106-111
    • /
    • 1996
  • Purpose : Propose a surgical technique in donor harvesting method in free vascularized proximal fibular epiphysis. Methodology : Concerned about growth potentials of the transplanted epiphysis in our long term results of the epiphyseal transplanted 13 cases more than 4 years follow-up, anterior tibial artery which contains anterior tibial recurrent artery is most reliable vessel to proximal fibular epiphysis which is the best donor of the free vascularized epiphyseal transplantation. In vascular anatomical aspect proximal fibular epiphysis norished by latearl inferior genicular artery from popliteal, posterior tibial recurrent artery and anterior tibial recurrent artery from anterior tibial artery and peroneal artery through metaphysis. The lateral inferior genicular artery is very small and difficult to isolate, peroneal artery from metaphysis through epiphyseal plate can not give enough blood supply to epiphysis itself. The anterior tibial artery which include anterior tibial recurrent and posterior tibial recurrent artery is the best choice in this procedure. But anterior tibial recurrent artery merge from within one inch from bifucating point of the anterior and posterior tibial arteries from popliteal artery. So it is very difficult to get enough vascular pedicle length to anastomose in recipient vessel without vein graft even harvested from bifucating point from popliteal artery. Authors took recipient artery from distal direction of anterior tibial artery after ligation of the proximal popliteal side vessel, which can get unlimited pedicle length and safer dissection of the harvesting proximal fibular epiphysis. Results : This harvesting procedure can performed supine position, direct anterolateral approach to proximal tibiofibular joint. Dissect and isolate the biceps muscle insertion from fibular head, micro-dissection is needed to identify the anterior tibial recurrent arteries to proximal epiphysis, soft tissue release down to distal and deeper plane to find main anterior tibial artery which overlying on interosseous membrane. Special care is needed to protect peroneal nerve damage which across the surgical field. Conclusions : Proximal fibular epiphyseal transplantation with distally directed anterior tibial artery harvesting technique is effective and easier dissect and versatile application with much longer arterial pedicle.

  • PDF

Anatomical Observation on Components Related to Foot Gworeum Meridian Muscle in Human

  • Park, Kyoung-Sik
    • 대한한의학회지
    • /
    • 제32권3호
    • /
    • pp.1-9
    • /
    • 2011
  • Objectives: This study was carried out to observe the foot gworeum meridian muscle from a viewpoint of human anatomy on the assumption that the meridian muscle system is basically matched to the meridian vessel system as a part of the meridian system, and further to support the accurate application of acupuncture in clinical practice. Methods: Meridian points corresponding to the foot gworeum meridian muscle at the body surface were labeled with latex, being based on Korean standard acupuncture point locations. In order to expose components related to the foot gworeum meridian muscle, the cadaver was then dissected, being respectively divided into superficial, middle, and deep layers while entering more deeply. Results: Anatomical components related to the foot gworeum meridian muscle in human are composed of muscles, fascia, ligament, nerves, etc. The anatomical components of the foot gworeum meridian muscle in cadaver are as follows: 1. Muscle: Dorsal pedis fascia, crural fascia, flexor digitorum (digit.) longus muscle (m.), soleus m., sartorius m., adductor longus m., and external abdominal oblique m. aponeurosis at the superficial layer, dorsal interosseous m. tendon (tend.), extensor (ext.) hallucis brevis m. tend., ext. hallucis longus m. tend., tibialis anterior m. tend., flexor digit. longus m., and internal abdominal oblique m. at the middle layer, and finally posterior tibialis m., gracilis m. tend., semitendinosus m. tend., semimembranosus m. tend., gastrocnemius m., adductor magnus m. tend., vastus medialis m., adductor brevis m., and intercostal m. at the deep layer. 2. Nerve: Dorsal digital branch (br.) of the deep peroneal nerve (n.), dorsal br. of the proper plantar digital n., medial br. of the deep peroneal n., saphenous n., infrapatellar br. of the saphenous n., cutaneous (cut.) br. of the obturator n., femoral br. of the genitofemoral n., anterior (ant.) cut. br. of the femoral n., ant. cut. br. of the iliohypogastric n., lateral cut. br. of the intercostal n. (T11), and lateral cut. br. of the intercostal n. (T6) at the superficial layer, saphenous n., ant. division of the obturator n., post. division of the obturator n., obturator n., ant. cut. br. of the intercostal n. (T11), and ant. cut. br. of the intercostal n. (T6) at the middle layer, and finally tibialis n. and articular br. of tibial n. at the deep layer. Conclusion: The meridian muscle system seemed to be closely matched to the meridian vessel system as a part of the meridian system. This study shows comparative differences from established studies on anatomical components related to the foot gworeum meridian muscle, and also from the methodical aspect of the analytic process. In addition, the human foot gworeum meridian muscle is composed of the proper muscles, and also may include the relevant nerves, but it is as questionable as ever, and we can guess that there are somewhat conceptual differences between terms (that is, nerves which control muscles in the foot gworeum meridian muscle and those which pass nearby) in human anatomy.

수태양소장경근(手太陽小腸經筋)의 해부학적(解剖學的) 연구(硏究) (Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human)

  • 박경식
    • 대한약침학회지
    • /
    • 제7권2호
    • /
    • pp.57-64
    • /
    • 2004
  • This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1) Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4), pisometacarpal lig.(SI-4), ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6), ulnar collateral lig.(SI-5), ext. digiti minimi m. tendon(SI-6), ext. carpi ulnaris(SI-7), triceps brachii(SI-9), teres major(SI-9), deltoid(SI-10), infraspinatus(SI-10, 11), trapezius(Sl-12, 13, 14, 15), supraspinatus(SI-12, 13), lesser rhomboid(SI-14), erector spinae(SI-14, 15), levator scapular(SI-15), sternocleidomastoid(SI-16, 17), splenius capitis(SI-16), semispinalis capitis(SI-16), digasuicus(SI-17), zygomaticus major(Il-18), masseter(SI-18), auriculoris anterior(SI-19) 2) Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6), br. of mod. antebrachial cutaneous n.(SI-6, 7), br. of post. antebrachial cutaneous n.(SI-6,7), br. of radial n.(SI-7), ulnar n.(SI-8), br. of axillary n.(SI-9), radial n.(SI-9), subscapular n. br.(SI-9), cutaneous n. br. from C7, 8(SI-10, 14), suprascapular n.(SI-10, 11, 12, 13), intercostal n. br. from T2(SI-11), lat. supraclavicular n. br.(SI-12), intercostal n. br. from C8, T1(SI-12), accessory n. br.(SI-12, 13, 14, 15, 16, 17), intercostal n. br. from T1,2(SI-13), dorsal scapular n.(SI-14, 15), cutaneous n. br. from C6, C7(SI-15), transverse cervical n.(SI-16), lesser occipital n. & great auricular n. from cervical plexus(SI-16), cervical n. from C2,3(SI-16), fascial n. br.(SI-17), great auricular n. br.(SI-17), cervical n. br. from C2(SI-17), vagus n.(SI-17),hypoglossal n.(SI-17), glossopharyngeal n.(SI-17), sympathetic trunk(SI-17), zygomatic br. of fascial n.(SI-18), maxillary n. br.(SI-18), auriculotemporal n.(SI-19), temporal br. of fascial n.(SI-19) 3) Blood vessels ; Dorsal digital vein.(SI-1), dorsal br. of proper palmar digital artery(SI-1), br. of dorsal metacarpal a. & v.(SI-2, 3, 4), dorsal carpal br. of ulnar a.(SI-4, 5), post. interosseous a. br.(SI-6,7), post. ulnar recurrent a.(SI-8), circuirflex scapular a.(SI-9, 11) , post. circumflex humeral a. br.(SI-10), suprascapular a.(SI-10, 11, 12, 13), first intercostal a. br.(SI-12, 14), transverse cervical a. br.(SI-12,13,14,15), second intercostal a. br.(SI-13), dorsal scapular a. br.(SI-13, 14, 15), ext. jugular v.(SI-16, 17), occipital a. br.(SI-16), Ext. jugular v. br.(SI-17), post. auricular a.(SI-17), int. jugular v.(SI-17), int. carotid a.(SI-17), transverse fascial a. & v.(SI-18),maxillary a. br.(SI-18), superficial temporal a. & v.(SI-19).