• Title/Summary/Keyword: antenna gain

Search Result 1,487, Processing Time 0.028 seconds

A Propose on the Propagation Prediction Model for Service in the Sea of CDMA Mobile Communication (CDMA 이동통신의 해상 서비스를 위한 전파예측모델 제안)

  • Kim, Young-Gon;Park, Chang-Kyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.106-112
    • /
    • 2001
  • Unfortunately, the area without economical efficiency, especially the far distance sea, is much lower than that of a urban area-built-up area. It should be promoted the equivalent level to a urban area in the light of future-oriented universal service. Actually, Because propagation environment of mobile communication in the sea is greatly different from that for inland focused on built-up area, a propagation prediction model in the sea should be distinguished from inland-based one. Accordingly, the purpose of this study is to suggest the propagation prediction model for the sea service as a method to minimize unnecessary facilities investment and maintenance caused by additional or new building of a base station. If mobile phone service for far distance sea is provided by expanding limited communication zone of narrow band CDMA mobile communication whose spread band FA is 1.2288MHz. Suggested propagation prediction model includes five parameters to minimize facilities investment of a base station and maximize channel capacity: equivalent line of sight, chip delay by PN code, antenna altitude, power of base station and gain of antennas. Finally, suggested propagation prediction model is simulated and, the results are examined for its utility by comparing with loss of free space.

  • PDF

Design and Implementation of High Efficiency Transceiver Module for Active Phased Arrays System of IMT-Advanced (IMT-Advanced 능동위상배열 시스템용 고효율 송수신 모듈 설계 및 구현)

  • Lee, Suk-Hui;Jang, Hong-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.26-36
    • /
    • 2014
  • The needs of active phased arrays antenna system is getting more increased for IMT-Advanced system efficiency. The active phased array structure consists of lots of small transceivers and radiation elements to increase system efficiency. The minimized module of high efficiency transceiver is key for system implementation. The power amplifier of transmitter decides efficiency of base-station. In this paper, we design and implement minimized module of high efficiency transceiver for IMT-Advanced active phased array system. The temperature compensation circuit of transceiver reduces gain error and the analog pre-distorter of linearizer reduces implemented size. For minimal size and high efficiency, the implented power amplifier consist of GaN MMIC Doherty structure. The size of implemented module is $40mm{\times}90mm{\times}50mm$ and output power is 47.65 dBm at LTE band 7. The efficiency of power amplifier is 40.7% efficiency and ACLR compensation of linearizer is above 12dB at operating power level, 37dBm. The noise figure of transceiver is under 1.28 dB and amplitude error and phase error on 6 bit control is 0.38 dB and 2.77 degree respectively.

A Design and Fabrication of a Compact Ka Band Transmit/Receive Module Using a Quad-Pack (쿼드팩을 이용한 소형 Ka 대역 송수신(T/R) 모듈의 설계 및 제작)

  • Oh, Hyun-Seok;Yeom, Kyung-Whan;Chong, Min-Kil;Na, Hyung-Gi;Lee, Sang-Joo;Lee, Ki-Won;Nam, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.389-398
    • /
    • 2011
  • In this paper, the design and fabrication of a transmit/receive(T/R) module for Ka-band phased array radar is presented. A 5bit digital phase shifter and digital attenuator were used in common for both transmitter and receiver considering unique Ka-band characteristic. The circulator was excluded in the T/R module and was placed outside T/R module. The transmitting power per element antenna is designed to be about 1 W and the noise figure is designed to be below 8 dB. The designed T/R module RF part has a compact size of $5\;mm{\times}4\;mm{\times}57\;mm$. In order to implement the T/R module, MMICs used in T/R module was separately assessed before assembly of the designed T/R module. The transmitter of the fabricated T/R module shows about 1 W at 5 dBm unit module input power and the receiver shows a gain of about 20 dB and a noise figure of below 8 dB as expected in the design stage.

A Cell Selection Technique Considering MIMO Precoding (MIMO 프리코딩을 고려한 셀 탐색 기법)

  • Kim, Han Seong;Hong, Tae Howan;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1076-1084
    • /
    • 2012
  • In the CS/CB(Coordinated Scheduling/Beamforming) scheme, the cell edge user throughput is increased by selecting MIMO (Multiple Input Multiple Output) precoders which can minimize the interferences from adjacent base stations (BSs). However, in current LTE(Long Term Evolution) systems, the serving cell is selected in the initialization stage by using the synchronization signals and cell specific reference signals transmitted by adjacent BSs with a single antenna. The selected BS in the initialization stage may not be the best one since the MIMO precoding gain has not been considered in the cell selection stage. In this paper, a new cell selection technique is proposed for LTE systems with MIMO precoder by taking into account the effect of the precoder in the initialization stage. The proposed technique enables a user equipment (UE) in the cell boundary to select the serving BS by using the information (channel rank, effective channel capacity, and effective SINR(Signal to Interference plus Noise Ratio)) acquired from cell specific reference signals of candidate BSs. It is verified by computer simulation that the proposed technique can increase the channel capacity significantly in the multi-cell environments, compared with the conventional CS/CB scheme.

Determination and Performance Evaluation of a Codebook for MIMO Systems Utilizing Statistical Properties of The Spatial Channel Model (공간 채널 모델의 통계적 특성을 활용하는 MIMO 시스템의 코드북 결정 및 성능 평가)

  • Suh, Junyeub;Kang, Hosik;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.22-30
    • /
    • 2015
  • For long-term evolution (LTE) MIMO transmission, codebooks are used to utilize the estimated channel information under the limited feedeback environment, and related study has been actively performed. Existing codebooks include codevectos constructed based on vector quantization (VQ) and discrete Fourier transform (DFT), and the LTE standard specifies codebooks modified from these examples to support up to 8 transmit antennas. As the number of antennas increases and as the spatial channel model is used as a standard environment to evaluate the LTE transmission performance, new beamforming methods as well as codebook designs are needed. In this paper, we implement the 3-dimensional spatial channel model (3D-SCM) to analyze the key statistical characteristics of the generated channel, and present efficient ways of determining corresponding codebooks. In particular, we propose a nonuniform-phase DFT-based codebook to improve the existing uniform-phase DFT-based codebook, and evaluate its performance under the given SCM transmission environment. There exists a strong tendancy in statistical distributions of the phase difference between adjacent antenna elements for the SCM, which can be appropriately exploited in codebook design to produce a performance gain over the existing design.

Comparison Study of Beam Pattern for FDD downlink CDMA Signals (FDD에서 하향링크 CDMA신호의 빔패턴 비교 연구)

  • Kim, Sang-Choon;Son, Kyung-Soo;Ha, Joo-Young;Lee, Sung-Mok;Jang, Won-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.358-365
    • /
    • 2007
  • In this paper, the effects of transmit beamforming on downlink performance in DS-CDMA communication systems are investigated. The uplink and downlink in FDD systems use different carrier frequencies. If the downlink uses the same weighting vectors as the uplink, the antenna beam for downlink is formed with certain DOA shift and it thus affects the beamforming gain. So, the impacts of different frequencies on the downlink beam patterns are studied. One possible algorithm to convert uplink beamforming weights to downlink, which is called frequency-calibrated processing, is also evaluated to reduce the degradation of downlink performance due to different frequencies. Under frequency selective channels, the downlink chooses a PUPW beamforming scheme when the uplink employs a PPPW vectors. To form a beam pattern for a PUPW after combining the downlink PPPWs converted from the uplink PPPWs, three approaches are studied. One method is to consider only one dominant path and thus obtain a single main-beam. In the others, multiple-beams weighted with the magnitudes of all paths and equally weighted with all paths are constructed.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.