• Title/Summary/Keyword: antagonistic gene

Search Result 87, Processing Time 0.021 seconds

Characterization of Bacillus licheniformis SCK A08 with Antagonistic Property Against Bacillus cereus and Degrading Capacity of Biogenic Amines (Bacillus cereus에 대한 길항적 저해 작용과 biogenic amines 분해 능력을 지닌 Bacillus licheniformis SCK A08 균의 특성)

  • Lee, Eon Sil;Kim, Yong Sang;Ryu, Myeong Seon;Jeong, Do Yeon;Uhm, Tai Boong;Cho, Sung Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • We have screened Bacillus strains suitable for the fermentation of soybean products with respect to the control of Bacillus cereus and the reduction of biogenic amines. Of 26 isolates, a strain named as the SCK A08 carried antimicrobial activity against B. cereus and Staphylococcus aureus, major food poisoning species in soybean products. PCR analysis revealed that the SCK A08 strain did not contain genes for Bacillus cereus toxins including nonhemolytic enterotoxin, hemolytic enterotoxin, cytotoxin K, cereulide and certrax. The SCK A08 strain could degrade histamine, tyramine, putrescine, and cadaverine by 67.41%, 76.59%, 57.32%, and 50.69%, respectively, during fermentation in cooked soybeans containing 0.5% (w/w) of each biogenic amine. The morphological and biochemical properties and phylogenetic relationships based on 16S rRNA gene sequences indicated that the isolate was most closely related to Bacillus licheniformis. Use of the strain SCK A08 would be a potential measure to overcome two hygienic problems that were frequently faced during manufacture of traditionally fermented soybean products.

Diversity and physiological properties of soil actinobacteria in Ulleung Island (울릉도 유래 토양 방선균의 다양성과 생리활성)

  • Yun, Bo-Ram;Roh, Su Gwon;Kim, Seung Bum
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.242-250
    • /
    • 2017
  • Actinobacteria tolerating extreme conditions can be a rich source of bioactive compounds and enzymes. In this study filamentous actinobacteria were isolated from soils of Ulleung Island, and their physiological properties were examined. Soil samples were collected, serially diluted and spread on various agar media. The average viable counts of total bacteria were $1.28{\times}10^7CFU/g$ for soil sample 1 (ULS1) and $2.05{\times}10^7CFU/g$ for soil sample 2 (ULS2). As a result, 34 strains of actinobacteria were isolated and assigned to the genera Streptomyces (16 strains), Isoptericola (5 strains), Rhodococcus (4 strains), Agromyces (3 strains), Micrococcus (2 strains), Arthrobacter (1 strain), Williamsia (1 strain), Microbacterium (1 strain), and Oerskovia (1 strain) based on 16S rRNA gene sequence analysis. Enzyme activity and plant growth promoting potential were tested for representative isolates. Multiple strains of Streptomyces degraded starch, casein and Tween 80. As for plant growth promoting potential, strains of Oerskovia, Williamsia, Isoptericola, and Streptomyces solubilized phosphate, and those of Agromyces, Oerskovia, Micrococcus, Rhodococcus, Streptomyces, and Isoptericola produced 3-indole-acetic acid (IAA), respectively. Selected strains of Streptomyces exhibited strong antagonistic activity against Staphylococcus aureus and Bacillus subtilis as well as Candida albicans. This study confirms that actinobacteria from Ulleung Island can be a good source of novel bioactive compounds.

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off (인삼모잘록병원균에 항균활성을 갖는 Bacillus 균의 분리 및 특성조사)

  • Park, Kyeong Hun;Park, Hong Woo;Lee, Seong Woo;Lee, Seung Ho;Myung, Kyung Sun;Lee, Sang Yeob;Song, Jaekyeong;Kim, Young Tak;Park, Kyoung Soo;Kim, Young Ock
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.380-387
    • /
    • 2016
  • This study was performed to select potentially available biological control agent from soil bacteria for prevention of ginseng damping off. More than five hundred strains were isolated from ginseng rhizosphere soil. By testing antifungal activity, we have selected three soil bacteria strains and their ability to produce antibiotics and lytic enzymes such as cellulase, protease and pectate lyase was examined. Also, the presence of genes for biosynthesis of lipopeptide such as fengycin, bacillomycin D, surfactin, iturin A, and zwittermicin A was investigated in selected strains. All three strains produced cellulase, protease, and xylanase. Moreover, these strains had gene for biosynthesis of bacillomycin D, surfactin, and iturin A. ES1 and ES3 strains were identified Bacillus methylotrophucus and ES2 was confirmed Bacillus amyloliquefaciens using phylogenetic analysis on the basis of 16S rRNA gene sequences. In field test, control value of ES1, ES2 and ES3 treatment was 32.4%, 46.8% and 36.7%, respectively. This results indicate that antagonistic microbes with high ability of antifungal and lytic enzyme activity can be used as a useful biological control agent to control ginseng damping off.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

Effect on the Inoculation of Bacillus on the Growth of Chinese Cabbage and Sesame and on Microbial Flora in Soils (Bacillus subtilis 접종이 배추 및 참깨의 생장(生長)과 토양(土壤) 미생물상(微生物相)에 미치는 영향(影響))

  • Kim, Kwang-Sik;Lee, Jae-Pyeong;Kim, Yong-Woong;Rhee, Young-Hwan;Kim, Yeong-Yil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.271-277
    • /
    • 1993
  • An antagonistic bacteria was isolated from rhiaosphere of pepper and corn and identified as Bacillus (B.) subtilis. These B. subtilis B-5 was transformed and marked with the plasmid pCPP4 which possess neomycine resistan. gene. The marked stranins showed growth inhibition to Rhizoctonia (R.) solani, Fusarium (F.) solani, and F. oxysporum in vitro, and were used in studying growth promoting effects on sesame and cabbage. All the identified strains utilize glucose, sucrose, fructose, lactose, mannitol and sorbitol as carbon source, but not rhamnose, and the marked strains also showed characteristics similar to wild-type strains. Germination rate of chinese cabbage and sesame seeds was increased by about 10% or more in the plot to which these strains were inoculated and the effect was higher in soil than in petri dish. The early growth promoting effects of these strains appeared higher, as compared with control plot, in the plots to which B. subtilis B-5 and pathogenic fungi was inoculated together. When the marked strains, B. subtilis B-5NEOr, were inoculated in the rhizosphere of chinese cabbage and sesame with $1.1{\times}10^8CFU/g$ dry soil, the number of inoculated strain was decreased slowly to the level of $10^5{\sim}10^6CFU/g$ dry soil after 4 weeks and the number of Pseudomonas spp. maintanied the level of $10^5CFU/g$ dry soil throught total period, but the number of fungi was decreased rapidly from the early level of $10^8CFU/g$ dry soil to $10^3CFU/g$ dry soil after 4 weeks.

  • PDF

In vivo Antifungal Activity of Pyrrolnitrin Isolated from Burkholderia capacia EB215 with Antagonistic Activity Towards Colletotrichum Species (탄저병균에 대하여 길항작용을 보이는 Burkholderia cepacia EB215로부터 분리한 Pyrrolnitrin의 항균활성)

  • Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Chung, Young-Ryun;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Mycology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • An endophytic bacterial strain EB215 that was isolated from cucumber (Cucumis sativus) roots displayed a potent in vivo antifungal activity against Colletotrichum species. The strain was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, and 16S rDNA gene sequence. Optimal medium and incubation period for the production of antifungal substances by B. cepacia EB215 were nutrient broth (NB) and 3 days, respectively. An antifungal substance was isolated from the NB cultures of B. cepacia EB215 strain by centrifugation, n-hexane partitioning, silica gel column chromatography, preparative TLC, and in vitro bioassay. Its chemical structure was determined to be pyrrolnitrin by mass and NMR spectral analyses. Pyrrolnitrin showed potent disease control efficacy of more than 90% against pepper anthracnose (Colletotrichum coccodes), cucumber anthracnose (Colletotrichum orbiculare), rice blast (Magnaporthe grisea) and rice sheath blight (Corticium sasaki) even at a low concentration of $11.1\;{\mu}g/ml$. In addition, it effectively controlled the development of tomato gray mold (Botrytis cinerea) and wheat leaf rust (Puccinia recondita) at concentrations over $33.3\;{\mu}g/ml$. However, it had no antifungal activity against Phytophthora infestans on tomato plants. Further studies on the development of microbial fungicide using B. cepacia EB215 are in progress.