• Title/Summary/Keyword: anodization

Search Result 333, Processing Time 0.022 seconds

Research Trends in Doping Methods on TiO2 Nanotube Arrays Prepared by Electrochemical Anodization (양극산화 기법으로 제조한 TiO2 나노튜브의 촉매 도핑 연구 동향)

  • Yoo, Hyeonseok;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.121-127
    • /
    • 2015
  • Nanotubular $TiO_2$ prepared by electrochemical anodization has been significantly used for various applications due to high aspect ratio structures showing a high chemical stability. Morphological properties of nanotubular titanium oxide are easily tailored by adjusting types and compositions of electrolyte, pH value, applied voltage, temperature and anodization time. Since their catalytic properties can be enhanced by doping foreign elements into $TiO_2$, metal as well as non-metal elements are doped into $TiO_2$ nanotubes using different methods. For example, single anodization, thermal annealing, precipitation, and electrochemical deposition have been applied to simplify the doping process. In this review, anodization of Ti to produce $TiO_2$ and doping methods will be discussed in detail.

Anodization Process of the YBa2Cu3O7-x Strip Lines by the Conductive Atomic Force Microscope Tip (전도성 AFM 탐침에 의한 YBa2Cu3O7-x 스트립 라인의 산화피막 형성)

  • 고석철;강형곤;임성훈;한병성;이해성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.875-881
    • /
    • 2004
  • Fundamental results obtained from an atomic force microscope (AFM) chemically-induced direct nano-lithography process are presented, which is regarded as a simple method for fabrication nm-scale devices such as superconducting flux flow transistors (SFFTs) and single electron tunneling transistors (SETs). Si cantilevers with Pt coating and with 30 nm thick TiO coating were used as conducting AFM tips in this study. We observed the surfaces of superconducting strip lines modified by AFM anodization' process. First, superconducting strip lines with scan size 2 ${\mu}{\textrm}{m}$${\times}$2 ${\mu}{\textrm}{m}$ have been anodized by AFM technology. The surface roughness was increased with the number of AFM scanning, The roughness variation was higher in case of the AFM tip with a positive voltage than with a negative voltage in respect of the strip surface. Second, we have patterned nm-scale oxide lines on ${YBa}-2{Cu}_3{O}_{7-x}$ superconducting microstrip surfaces by AFM conductive cantilever with a negative bias voltage. The ${YBa}-2{Cu}_3{O}_{7-x}$ oxide lines could be patterned by anodization technique. This research showed that the critical characteristics of superconducting thin films were be controlled by AFM anodization process technique. The AFM technique was expected to be used as a promising anodization technique for fabrication of an SFFT with nano-channel.

Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process (양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성)

  • Jeong, Dasol;Kim, Donghyun;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.298-305
    • /
    • 2019
  • We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

Formation of Porous Oxide Layer on Stainless Steel by Anodization in Hot Glycerol Electrolyte (고온 글리세롤 전해질에서 양극산화를 이용한 나노구조 스테인리스 스틸 산화막의 형성)

  • Lee, Jaewon;Choi, Hyun-Kuk;Kim, Moon Gab;Lee, Yong Sei;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.215-219
    • /
    • 2020
  • In this study, nanoporous iron oxide layers were fabricated by the anodization of 304 series stainless steel. K2HPO4/glycerol solution was used as an electrolyte for anodization. We investigated the anodization behavior according to various parameters such as electrolyte concentration, reaction temperature, applied voltage, and reaction time. As a result of anodization, we confirmed that the anodic growth rate of oxide layer on 304 series stainless steel increased with increasing the electrolyte temperature and applied potential. In order to form well-ordered porous nanostructures, the electrolyte temperature was at 160 ℃, and the applied potential was at 30 V in 10 wt% K2HPO4/glycerol electrolyte.

Effect of the Removal of an Initial Oxide Layer and the Anodization Time on the Growth of the Porous Alumina Layer (초기 산화피막 제거와 양극산화 시간에 따른 다공성 알루미나 막의 성장)

  • Kim, Dae-Hwan;Lue, Sang-Hee;Lee, Hyo-Jin;Park, Young-Ok;Lee, Eun-Joong;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.191-195
    • /
    • 2010
  • We have investigated the effect of the removal of an initial oxide layer and the anodization time on the growth of the porous alumina layer. The porous alumina layer was fabricated by two-step anodization process with phosphoric acid. We have observed the changes in the uniformity of the pore structure by varying the removing time of the initial oxide layer after the first anodization with phosphoric acid and chromic acid, and noted that its uniformity improves with the removing time. We have also determined the thickness of the alumina layer after the final anodization process and found that the thickness increases linearly with the anodization time. Under 150 V of anodization voltage with phosphoric acid, the growth rate of the porous alumina layer is determined to be 22.5 nm/min.

Development of Fabrication Technique of Highly Ordered Nano-sized Pore Arrays using Thin Film Aluminum (박막 알루미늄을 이용한 규칙적으로 정렬된 나노급 미세기공 어레이 제조기술 개발)

  • Lee, Jae-Hong;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.708-713
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer was fabricated. It Is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2 M was used for low voltage anodization under 100 V, the chromic acid with 0.1 M was used for high voltage anodization over 100 V. The nano-sized pores with diameter of $60\~120$ nm was obtained by low voltage anodization of $40\~80$ V and those of $200\~300$ nm was obtained by high voltage anodization of $140\~200$ V. The pore widening process was employed for obtaining the one-channel with flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1 M concentration to etching the barrier layer.

Effect of Power Mode of Plasma Anodization on the Properties of formed Oxide Films on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.544-550
    • /
    • 2018
  • The passivation of AZ91D Mg alloys by plasma anodization requires deliberate choice of process parameters due to the presence of large amounts of structural defects. We study the dependence of pore formation, surface roughness and corrosion resistance on voltage by comparing the direct current (DC) mode and the pulse wave (pulse) mode in which anodization is performed. In the DC plasma anodization mode, the thickness of the electrolytic oxide film of the AZ91D alloy is uneven. In the pulse mode, the thickness is relatively uniform and the formed thin film has a three-layer structure. The pulse mode creates less roughness, uniform thickness and improved corrosion resistance. Thus, the change of power mode from DC to pulse at 150 V decreases the surface roughness (Ra) from $0.9{\mu}m$ to $0.1{\mu}m$ and increases the corrosion resistance in rating number (RN) from 5 to 9.5. Our study shows that an optimal oxide film can be obtained with a pulse voltage of 150 V, which produces an excellent coating on the AZ91D casting alloy.

The formation of highly ordered nano pores in Anodic Aluminum Oxide

  • Im, Wan-soon;Cho, Kyung-Chul;Cho, You-suk;Park, Gyu-Seok;Kim, Dojin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.53-53
    • /
    • 2003
  • There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.

  • PDF

Effect of surface anodization on stability of orthodontic microimplant

  • Karmarker, Sanket;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.4-10
    • /
    • 2012
  • Objective: To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase aft er placement. Methods: A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed aft er 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results: There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants ($3.79{\pm}1.39$ Ncm) than for the machined ones ($2.05{\pm}1.07$ Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions: Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage.

Fabrication of Functional Microfiltration TiO2 Metal Membrane Using Anodization (산화피막 형성 기술을 이용한 기능성 정밀여과형 TiO2 금속막 개발)

  • Choi, Seungpil;Kim, Geontae;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.33-39
    • /
    • 2010
  • A self-organized nano-structured, photocatalytic $TiO_2$ membrane with large surface area of anatase crystallites was successfully fabricated by anodization. The nano-structured anodized $TiO_2$ membrane was characterized using EDX, SEM and XRD techniques and the effect of electrolyte type and concentration to fabricate $TiO_2$ metal membrane was also investigated. Regular nano tubular arrays were obtained By the EDX, SEM and XRD patterns, the anodized $TiO_2$ membrane showed the enhanced photocatalytic properties of anatase phase. Photocatalytic activities of fabricated $TiO_2$ metal membrane was also experimentally investigated as model compound of humic acid.