• 제목/요약/키워드: anodic polarization test

검색결과 99건 처리시간 0.026초

SnCu계 무연솔더의 Ni, P 첨가에 따른 분극거동 (Polarization Behaviors of SnCu Pb-Free Solder Depending on the P, Ni, Addition)

  • 홍원식;김휘성;박성훈;김광배
    • 한국재료학회지
    • /
    • 제15권8호
    • /
    • pp.528-535
    • /
    • 2005
  • It is inclined to increase that use of hazardous substances such as lead(Pb), mercury (Hg), cadmium(Cd) etc. are prohibited in the electronics according to environmental friendly policies of an advanced nation for protecting environment of earth. As this reasons, many researches for ensuring the reliability were proceeding in Pb free soldering process. n the flux remains on the PCB(printed circuit board) in the soldering process or the electronics exposed to corrosive environment, it becomes the reasons of breakdown or malfunction of the electronics caused by corrosion. Therefore in this studies we researched the polarization and Tafel properties of Sn40Pb and SnCu system solders based on the electrochemical theory. The experimental polarization curves were measured in distilled ionized water and 1 mole $3.5 wt\%$ NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrodes, respectively. To observe the electrochemical reaction, polarization test was conducted from -250mV to +250mV. From the polarization curves composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density((cow). In these results, we compared the corrosion rate of SnPb and SnCu solders.

가스흡수식 냉온수기 열교환기용 세관의 부식특성에 관한 연구 (The Study on Corrosion Characteristics of Heat Exchanger Tube for Gas Absorption Refrigeration & Hot Water System)

  • 정기철
    • 한국가스학회지
    • /
    • 제6권1호
    • /
    • pp.92-97
    • /
    • 2002
  • 가스흡수식 냉온수기의 작동매체로 사용되고 있는 LiBr 수용액 중에서 열교환기 세관용 재료인 동 세관 및 동합금재인 큐프로니켈 세관의 부식특성에 관한 연두를 하기 위하여 $62\%$ LiBr 수용액 중에서 각 재료에 대한 전기화학적 분극실험을 실시하여 부식특성을 고찰한 결과 다음과 같은 결론을 얻었다 1) 열교환기 세관재의 분극저항은 $30\%$ 큐프로니켈 세관 > $10\%$ 큐프로니켈 세관 > 동 세관의 순으로 높게 나타난다 2) 큐프로니켈 세관의 개로전위는 동 세관보다 귀전위화되면서 부식전류밑도는 더 억제된다 3) $30\%$ 큐프로니켈 세관의 부동태 영역은 $10\%$ 큐프로니켈 세관보다 전위구간이 더 크게. 나타나면서 부동태유지 전류밀도는 더 낮아진다.

  • PDF

스테인리스강 열교환기의 틈부식 방지에 관한 연구 (Study on the Prevention of Crevice Corrosion for a Stainless Steel Heat Exchanger)

  • 임우조;윤병두
    • 수산해양교육연구
    • /
    • 제17권1호
    • /
    • pp.106-114
    • /
    • 2005
  • This paper is a study on the prevention of crevice corrosion for a stainless steel heat exchanger in various pH solutions and with Cl ion concentrations. The electrochemical polarization test and crevice corrosion test of STS 304 for a heat exchanger were carried out. The crevice corrosion aspect, a passive behavior, crevice corrosion behavior, and corrosion protection characteristics of STS 304 using Al-alloy and Mg-alloy galvanic anode were considered. The main results are as follows: 1. The crevice corrosion of STS 304 occurs in the crevice and this corrosion increases pitting according to depth direction. On the other hand, the exterior crevice becomes passive. 2. With changing from a neutral to acid environment and increasing Cl ion concentration, the pitting potential of STS 304 lowers, and thus the crevice corrosion of STS 304 is sensitive. 3. The cathodic protection potential of STS 304 in the crevice is cathodically polarized by increasing Cl ion concentration. Therefore, an Al-alloy galvanic anode is more suitable than a Mg-alloy galvanic anode to protect the crevice corrosion of STS 304.

초고속화염용사법으로 제조된 Ni-Cr-W-Mo-B 합금 코팅의 미세조직과 특성에 미치는 열처리 효과 (Effect of Heat Treatment on the Microstructures and Properties of HVOF Sprayed Ni-Cr-W-Mo-B Alloy Coatings)

  • 민경오;이창희
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.48-54
    • /
    • 2000
  • The corrosion properties of Ni-Cr-W-Mo-B alloy sprayed by the high velocity oxy-fuel spraying (HVOF) was studied as a function of heat treatment by using both potentiodynamic polarization and immersion tests in the H₂SO₄ solution. The mechanical property was also evaluated by a microhardness tester. Microstructural characteristics of te as-sprayed and annealed coatings at 550, 750 and 950℃ have been analyzed by means of OM, XRD, SEM and TEM. The results showed that the corrosion resistance was improved by increasing the annealing temperature. As-sprayed coating had metastable and heterogeneous phases such as amorphous, nanocrystalline and very refined grain and precipitates, which induced a localized corrosion. The localized corrosion occurred preferentially at the unmelted particles which were composed of Ni matrix and Cr, W and Mo riched phase segregated in the boundaries. As annealing temperature was increased, the microstructure had shown some changes - reduction of porosity and s[plat boundary decomposition and crystallization of amorphous/nanocrystalline phases, grain coarsening,, formation and growth of precipitates such as {TEX}$M_{23}C_{6}${/TEX} and {TEX}$M_{7}C_{3}${/TEX}. In addition, the compositional difference between matrix and boundary phases gradually disappeared, which changed the corrosion type from localized corrosion to general corrosion and thus enhanced corrosion resistance.

  • PDF

천연해수 용액에서 STS 304와 용융 알루미늄 도금된 STS 304의 캐비테이션-침식 환경 하에서의 전기화학적 특성 (Electrochemical Characteristics under Cavitation-Erosion Environment of STS 304 and Hot-Dip Aluminized STS 304 in Sea Water Solution)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.26-31
    • /
    • 2016
  • In this paper, the characteristics of a cavitation-erosion damage behavior on the STS 304 and hot-dip aluminized STS 304 under cavitation environment in sea water solution was investigated. The electrochemical experiments were carried out by potential measurement, anodic/cathodic polarization test, Tafel analysis, and also galvanostatic experiment in current density variables for the samples. The apparatus of cavitation-electrochemical experiment was manufactured in compliance with modified ASTM G-32 standard, with the conditions of sea water temperature of $25^{\circ}C$ and the measurement, amplitude of $30{\mu}m$. The damage behavior was analyzed by an observation of surface mophologies and a measurement of damage depth by a scanning electron microscope(SEM) and a 3D microscope, respectively, after electrochemical test. After polarization experiment under cavitation environment, much higher damage depths for the hot-dip aluminized STS 304 were observed comparing to the untreated STS 304. In addition, higher corrosion current density in hot-dip aluminized STS 304 presented than that of untreated STS 304 as a result of Tafel analysis.

임플랜트 지대주와 주조 금합금과의 접합 및 부식에 관한 연구 (A STUDY OF INTERFACE AND CORROSION BEHAVIOR BETWEEN IMPLANT ABUTMENT AND CASTING GOLD ALLOY)

  • 손미경;마장선;정재헌
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.672-686
    • /
    • 1999
  • The purpose of this study was to compare the casting problem and corrosion behavior in two types of HL Hexed abutments of the Steri-Oss system ; gold/plastic coping and gold coping. The anodic Polarization behavior, the galvanic corrosion between abutments and Type III gold alloys, before and after casting were analyzed, and the crevice corrosion of casting samples was analyzed with the CPPT test and the SEM. The results are as follows : 1. Anodic polarization behavior of samples ; Before casting, gold/plastic coping and gold coping was shown to have a similar corrosion pat-terns. Type III casting gold alloy was shown to have a lower corrosion potential and passivation film. Corrosion potential of the case of gold/plastic coping after casting was higher than that of gold coping, but the region of passivation film for gold/plastic coping was smaller than that of gold coping. 2. Galvanic corrosion behavior of samples ; Contact current density between casting gold alloys and gold/plastic before casting was higher than that between gold coping and casting gold alloy Galvanic corrosion of samples after casting was shown to have similar contact current density 3. Crevice corrosion behavior of samples ; Crevice corrosion resistance of casting sample using gold coping was lower than that of cast-ing sample using gold/plastic coping, and a severe corrosion pattern was observed at the abutment-casting gold alloy interface by the SEM.

  • PDF

Fe-Al-Cr계 합금의 부식거동에 미치는 Al 및 Cr 합금원소의 영향 (Effects of Al and Cr Alloying Elements on the Corrosion Behavior of Fe-Al-Cr Alloy System)

  • 최한철
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.241-247
    • /
    • 2005
  • Effects of Al and Cr alloying elements on the corrosion behavior of Fe-Al-Cr alloy system was investigated using potentiodynamic and cyclic potentiodynamic polarization tests(CPPT) in the $H_2SO_4$ and HCI solutions. The corrosion morphologies in Fe-Al-Cr alloy were analysed by utilizing scanning electron microscopy(SEM) and EDX. It was found that the corrosion potential of Fe-20Cr-20Al was highest whereas the critical anodic current density and passive current density were lower than that of the other alloys in 0.1 M $H_2SO_4$ solution. The second anodic peak at 1000 mV disappeared in the case of alloys containing high Al and low Cr contents. Pitting potential increased with increasing Cr content and repassivation potential decreased with decreasing Al content in 0.1 M HCI solution. Fe-Al-Cr alloy containing high Al and Cr contents showed remarkably improved pitting resistance against $Cl^-$ attack from pit morphologies.

Effect of Aging Time on the Resistance to Localized Corrosion of the Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Kim, Ji-Soo;Kim, Kwang-Tae;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.209-215
    • /
    • 2010
  • To elucidate the effect of aging time on resistance to localized corrosion of hyper duplex stainless steel, a double-loop electrochemical potentiokinetic reactivation test a potentiodynamic anodic polarization test, a scanning electron microscope-energy dispersive spectroscope analysis, and a thermodynamic calculation were conducted. With an increase in aging time, sigma phases are precipitated much more than chi phases due to the meta-stable chi phase acting as a transition phase. As aging time at $850^{\circ}C$ increases, the corrosion resistance decreases owing to an increase in Cr, Mo and W depleted areas adjacent to the intermetallic phases such as sigma phases and chi phases.

스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용 (Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels)

  • 김성유;김희산
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.70-76
    • /
    • 2006
  • 마이크로 전기화학 실험법인 비접촉식 미세방울셀이 산 용액에 노출된 저 크롬이 함유된 스테인리스강(STS 316)과 같이 젖음성이 높은 전기화학계에 사용되는데 어려움이 있었다. 음압의 인가, 방울의 크기 제어 그리고 소수성의 개스킷의 사용은 높은 젖음성을 지닌 표면에서 비접촉식 미세방울셀의 적용을 가능하게 하였다. 개선된 미세방울셀의 신뢰성을 확인하고자 3종류의 다른 계-산성염화용액과 고 크롬 페라이트 스테인리스강, 산성염화용액과 STS 316 그리고 중성염화용액과 STS 316-에 대하여 개선된 미세방울셀로 국부부식 연구를 수행하였다. 첫째 산성용액에서 고 크롬강의 양극 분극 결과는 $\alpha/\sigma$ 계면 근처에서 국부부식이 크롬 고갈층에 의한 것임을 보여주었다. 둘째 산성용액에서 STS316의 양극 분극실험이 개선된 미세방울셀에서 성공적으로 수행됨을 확인할 수 있었다. 특히, 미세방울셀에서 얻어진 국부 양극 분극곡선을 통해 STS316의 내식성에 미치는 $\delta$-라이트 영향을 밝힐 수 있었다. 마지막으로 중성염화 용액에서 STS316의 양극 분극곡선은 핏팅 저항성이 $\delta$-페라이트보다 개재물에 의존됨을 보여주었다.

플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘 (Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm)

  • 박진성;이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.123-130
    • /
    • 2023
  • This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.