• Title/Summary/Keyword: anodic current

Search Result 432, Processing Time 0.025 seconds

Characterization of Surface at Ti Oxide Films Converted by Anodic Spark Discharge (양극산화 불꽃 방전에 의한 Ti 산화피막의 표면특성)

  • Song, Jae-Joo;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.545-546
    • /
    • 2006
  • This study was performed to investigate the surface properties of electrochemically oxidized pure titanium by anodic spark discharging method. Commercially pure titanium plates of $10{\times}20{\times}1[mm]$ in dimensions were polished sequentially emery paper. Anodizing was performed at current density of $76.2\;[mA/cm^2]$, application voltage of 290, 350, 400 [V] using a regulated DC power supply, which allowed automatic transition constant current when a preset maximum voltage has been reached. The Ti surface oxided films was characterized by scanning electron microscope(SEM). The precipitation of HA(Hydroxyapatite) crystals on anodized surface was greatly accelerated by hydrothermal treatment. The concentrations of DL-$\alpha$-Glycerolphosphate Magnesiurn(DL-$\alpha$-GP-Mg) salt and Ca acetate in an electrolyte was highly affected the precipitation of HA crystals converted by Ti Anodized oxide films by Shape of Impulse Voltage.

  • PDF

Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites (양극산화 처리에 따른 탄소섬유 표면의 페놀릭 하이드록실 관능기 비율의 증가가 에폭시기지 복합재료의 기계적 계면결합 특성에 미치는 영향)

  • Kim, Dong-Kyu;Kim, Kwan-Woo;Han, Woong;Song, Bhumkeun;Oh, Sang-Yub;Bang, Yun Hyuk;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.472-477
    • /
    • 2016
  • We studied the effects of anodic oxidation treatments of carbon fibers on interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites with various current densities. The surface of treated carbon fibers was characterized by atomic force microscope (AFM), field emission-scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The interlaminar shear strength (ILSS) of the composites was determined by a short beam shear test. This result showed that both the roughness and oxygen group of the carbon fibers surface increased in proportion to the current density. After anodic-oxidation-treated, the ILSS also increased as a function of the current density. In addition, the proportional relationship between ILSS and phenolic hydroxyl group was confirmed. The ILSS of the CF-2.0 sample increased by 4% compared to that of the CF-AS sample, because the anodic oxidation treatment increased the oxygen group and roughness on the carbon fibers surface, which leading to the improvement of the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites. Among these, the phenolic hydroxyl group which has the proportional relationship with ILSS is found to be the most important factor for improving the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites.

Characteristics of Lead Anodic Films Formed in Aqueous Solutions and Reactivities of Di-iso-butylnitrosoamine in Sea Water (납 산화피막 전극의 특성과 디이소부틸니트로소아민의 전극반응성)

  • Hwang Kum-Sho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 1981
  • The cathodic reactions of lead anodic films formed in phosphoric acid, oxalic acid and sodium hydroxide solutions and the reactivities of Di-iso-butylnitrosoamine (DBNA) in sea water at $15\sim30^{\circ}C$ were studied by means of constant current-potential method. Besides, various contants and thermodynamic quantities obtained in the experiment were also do-scribed to explain the reactivities of protons that entered in the anodic film by being transferred across the metal-oxide interface. The electrode reactions of lead anodic film formed in sodium hydroxide solution in 60mM DBNA+0.5M NaCl did not occur because of complete insulator formed on anodic film. The values of $(\partial\triangle E_{H^+}/\partial T)_{i=const}$, estimated with Bead anodic films formed in phosphoric acid in 60mM DBNA+0.5M NaCl and 60mM $DBNA+6\%_{\circ}$ sea water were $-0.006\;V/^{\circ}C\;and\;-0.005\;V/^{\circ}C$, thus being nearly coincided, but the values of $(\partial E_o/\partial T)_{i=o}$ were $0.002\;V/^{\circ}C\;and\;-0.002\;V/^{\circ}C$, being completely inversed.

  • PDF

Study on the Electrolyte for Zn-Br Redox Flow Battery (Zn-Br 레독스 흐름 전지용 전해액에 관한 연구)

  • Choi, Ho-Sang;Oh, Yong-Hwan;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.347-352
    • /
    • 2013
  • Four types of electrolyte were tested for the application as an electrolyte in the Zn-Br redox flow battery. Electrolyte was consist of $ZnBr_2$ (electrolyte number 1), $ZnBr_2+KCl$ (electrolyte number 2), $ZnBr_2+KCl+NH_4Br$ (electrolyte number 3) and $ZnBr_2+KCl+EMPBr(C_7H_{16}BF_4N)$ (electrolyte number 4). The each electrolyte property was measured by CV (cyclic voltammetry) method. The different between the potential of anodic and cathodic maximum current density in a CV experiment (${\Delta}E_P$) was 0.89V, 0.89V, 1.06V and 0.61V for the electrolyte number 1, 2, 3 and 4, respectively. The electrolyte involved KCl increased conductivity which was appeared by anodic and cathodic maximum current density in a CV experiment. It was estimated that the electrolyte of number 3 ($ZnBr_2+KCl+NH_4Br$) and number 4 ($ZnBr_2+KCl+EMPBr$) could be suitable as an electrolyte in the Zn-Br redox flow battery with non-appeared bubble, non-Br formation and high anodic-cathodic maximum current density.

Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method (정전위법에 의한 해상풍력 타워 구조물용 강재의 음극방식을 위한 최적방식전위 결정)

  • Lee, Jung-Hyung;Jung, Kwang-hu;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • In this study, electrochemical methods were used to determine the optimum protection potential of S355ML steel for the cathodic protection of offshore wind-turbine-tower substructures. The results of potentiodynamic polarization experiments indicated that the anodic polarization curve did not represent a passivation behavior, while under the cathodic polarization concentration, polarization was observed due to the reduction of dissolved oxygen, followed by activation polarization by hydrogen evolution as the potential shifted towards the active direction. The concentration polarization region was found to be located between approximately -0.72 V and -1.0 V, and this potential range is considered to be the potential range for cathodic protection using the impressed current cathodic protection method. The results of the potentiostatic experiments at various potentials revealed that varying current density tended to become stable with time. Surface characterization after the potentiostatic experiment for 1200 s, by using a scanning electron microscope and a 3D analysis microscope confirmed that corrosion damage occurred as a result of anodic dissolution under an anodic polarization potential range of 0 to -0.50 V, which corresponds to anodic polarization. Under potentials corresponding to cathodic polarization, however, a relatively intact surface was observed with the formation of calcareous deposits. As a result, the potential range between -0.8 V and -1.0 V, which corresponds to the concentration polarization region, was determined to be the optimum potential region for impressed current cathodic protection of S355ML steel.

Reactivities of Di-iso-butylnitrosoamine by Anodic Film Formed on Metals (산화피막전극을 이용한 디이소부틸니트로소아민의 전극반응)

  • Hwang Kum-Sho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.94-102
    • /
    • 1981
  • To investigate the characteristics of anodic film formed on metals and the reactivities of organic inhibitor Di-iso-butylnitrosoamine (DBNA) in sea water. the cathodic reactions of anodic film formed on metals were carried out by using the potential drop method and galvanostatic method at $25^{\circ}C$. The investigated results are as follows: The anodic films formed on aluminum and zinc in 60mM $DBNA+9\%_{\circ}$ sea water did not show-changes of potential drop. However, those formed on lead and copper were reasonable electrodes. It was concluded that cathodic reactivities of proton through the anodic film in aqueous solution were constant without regard to the kinds of metals used with anodic film electrode at operated current density ranges, because the values of transition time obtained in 0.5M sodium chloride solution and $9\%_{\circ}$ sea water nearly coincided. The values of transition time of the first step by the galvanostatic method were obtained from 0.22 to 1.40 sec ranges far less than one minute. Therefore, it suggested that cathodic reactions of proton through the anodic film were mainly controlled by diffusion/adsorption process. The differences of between $\tau_{1}/4$ in $9\%_{\circ}$ sea water and $\tau_{1}/4$ in 60mM $DBNA+9\%_{\circ}$ sea water, and between $E_{1}/4$ in sea water and $E_{1}/4$ in 60mM $DBNA+9\%_{\circ}$ sea water at the constant current density with $1.9\times10^{-4}\sim5.0{\times}10^{-6}\;amp/cm^2$ were 0.06 sec and 0.53 v. respectively and cathodic reactions of DBNA on the anodic film electrodes were chiefly controlled by adsorption/diffusion process. The reason that adsorption quantities of proton on anodic film formed on aluminum and zinc in aqueous solutions were much more than those on lead and copper, seems to lie due mostly to the number of porosity produced on anodic film used.

  • PDF

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.

A Novel Electrochemical Method for Sensitive Detection of Melamine in Infant Formula and Milk using Ascorbic Acid as Recognition Element

  • Li, Junhua;Kuang, Daizhi;Feng, Yonglan;Zhang, Fuxing;Xu, Zhifeng;Liu, Mengqin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2499-2507
    • /
    • 2012
  • A novel and convenient electrochemical method has been developed for sensitive determination of melamine (MEL) using ascorbic acid (AA) as the recognition element. The working electrode employed in this method was modified with the nanocomposite of hydroxyapatite/carbon nanotubes to enhance the current signal of recognition element. The interaction between MEL and AA was investigated by fourier transform infrared spectroscopy and cyclic voltammetry, and the experimental results indicated that hydrogen bonding was formed between MEL and AA. Because of the existing hydrogen bonding and electrostatic interaction, the anodic peak current of AA was decreased obviously while the non-electroactive MEL added in. It illustrated that the MEL acted as an inhibitor to the oxidation of AA and the decreasing signals can be used to detect MEL. Under the optimal conditions, the decrease in anodic peak current of AA was proportional to the MEL concentrations ranging from 10 to 350 nM, with a detection limit of 1.5 nM. Finally this newly-proposed method was successfully employed to detect MEL in infant formula and milk, and good recovery was achieved.