Browse > Article
http://dx.doi.org/10.14478/ace.2016.1054

Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites  

Kim, Dong-Kyu (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
Kim, Kwan-Woo (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
Han, Woong (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
Song, Bhumkeun (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
Oh, Sang-Yub (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
Bang, Yun Hyuk (Hyosung R&DB Labs)
Kim, Byung-Joo (Applied Materials and Components Headquartets, Korea Institute of Carbon Convergence Technology)
Publication Information
Applied Chemistry for Engineering / v.27, no.5, 2016 , pp. 472-477 More about this Journal
Abstract
We studied the effects of anodic oxidation treatments of carbon fibers on interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites with various current densities. The surface of treated carbon fibers was characterized by atomic force microscope (AFM), field emission-scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The interlaminar shear strength (ILSS) of the composites was determined by a short beam shear test. This result showed that both the roughness and oxygen group of the carbon fibers surface increased in proportion to the current density. After anodic-oxidation-treated, the ILSS also increased as a function of the current density. In addition, the proportional relationship between ILSS and phenolic hydroxyl group was confirmed. The ILSS of the CF-2.0 sample increased by 4% compared to that of the CF-AS sample, because the anodic oxidation treatment increased the oxygen group and roughness on the carbon fibers surface, which leading to the improvement of the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites. Among these, the phenolic hydroxyl group which has the proportional relationship with ILSS is found to be the most important factor for improving the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites.
Keywords
anodic oxidation; carbon fibers; composites; interlaminar shear strength;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 S. J. Park, J. S. Oh, and J. R. Lee, Effect of anodized carbon fiber surfaces on mechanical interfacial properties of carbon fibers-reinforced composites, J. Korean Soc. Compos. Mater., 15, 16-23 (2002).
2 Z. R. Yue, W. Jiang, L. Wang, S. D. Gardner, and C. U. Pittman Jr., Surface characterization of electrochemically oxidized carbon Fibers, Carbon, 37, 1785-1796 (1999).   DOI
3 M. S. Ha, O. Y. Kwon, and H. S. Choi, Improved electrical conductivity of CFRP by conductive silver nano-particles coating for lightning strike protection, J. Korean Soc. Compos. Mater., 23, 31-36 (2010).
4 H. Li, H. Liang, F. He, Y. Huang, and Y. Wan, Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites, Surf. Coat. Technol., 203, 1317-1321 (2009).   DOI
5 C. A. Mahieux, Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry: the example of a carbon-fiber reinforced thermoplastic flywheel, Compos. Struct., 52, 517-521 (2001).   DOI
6 F. L. Jin and S. J. Park, Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review, Carbon Lett., 16, 67-77 (2015).   DOI
7 P. E. Vickers, J. F. Watts, C. Perruchot, and M. M. Chehimi, The surface chemistry and acid-base properties of a PAN-based carbon fibre, Carbon, 38, 675-689 (2000).   DOI
8 W. Song, A. Gu, G. Liang, and L. Yuan, Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites, J. Appl. Surf. Sci., 257, 4069-4074 (2011).   DOI
9 B. Xu, X. Wang, and Y. Lu, Surface modification of polyacrylonitrile- based carbon fiber and its interaction with imide, J. Appl. Surf. Sci., 253, 2695-2701 (2006).   DOI
10 K. M. Lee, S. E. Lee, M. I. Kim, and Y. S. Lee, Mechanical and thermal properties of epoxy composites reinforced fluorinated illite and carbon nanotube, Appl. Chem. Eng., 27, 285-290 (2016).   DOI
11 C. W. Moon, G. Jung, S. S. Im, C. W. Nah, and S. J. Park, Effect of anodic oxidation of $H_2SO_4/HNO_3$ ratio for improving interfacial adhesion between carbon fibers and epoxy matrix resins, Polymer(Korea), 37, 61-65 (2013).
12 H. I. Kim, W. K. Choi, S. Y. Oh, K. H. An, and B. J. Kim, Effects of electrochemical oxidation of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced polarized-polypropylene matrix composites, Appl. Chem. Eng., 24, 476-482 (2013).
13 M. Delamar, G. Dsarmot, O. Fagebaume, R. Hitmi, J. Pinsom, and J. M. Savant, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801-807 (1997).   DOI
14 Z. Xu, Y. Huang, C. Zhang, Y. Zhang, and L. Wang, Effect of c-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites, Compos. Sci. Technol., 67, 3261-3270 (2007).   DOI
15 C. Lu, P. Chen, Q. Yu, Z. Ding, Z. Lin, and W. Li, Interfacial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite, J. Appl. Polym. Sci., 106, 1733-1741 (2007).   DOI
16 L. H. Meng, Z. W. Chen, X. L. Song, Y. X. Liang, Y. D. Huang, and Z. X. Jiang, Influence of high temperature and pressure ammonia solution treatment on interfacial behavior of carbon fiber/epoxy resin composites, J. Appl. Polym. Sci., 113, 3436-3441 (2009).   DOI
17 J. Gulys, E. Fldes, A. Lzr, and B. Puknszky, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion, Compos. A, 32, 353-360 (2001).   DOI
18 A. Fukunaga, S. Ueda, and M. Magumo, Anodic surface oxidation mechanisms of PAN-based and pitch-based carbon fibres, J. Mater. Sci., 23, 2851-2854 (1991).
19 M. A. Montes-Morn, A. Martnez-Alonso, J. M. D. Tascn, and R. J. Young, Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres, Compos. A, 32, 361-371 (2001).   DOI
20 S. J. Park and B. J. Kim, Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior, Mater. Sci. Eng. A, 408, 269-273 (2005).   DOI
21 Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002).   DOI
22 J. Liu, Y. Tian, Y. Chen, and J. Liang, Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in $(NH_4HCO_3)/(NH_4)_2C_2O_4{\cdot}H_2O$ aqueous compound solution, J. Appl. Surf. Sci., 256, 6199-6204 (2010).   DOI
23 W. Han, W. K. Choi, K. H. An, H. G. Kim, S. J. Kang, and B. J. Kim, Effects of crack resistance properties of ozone-treated carbon fibers-reinforced nylon-6 matrix composites, Appl. Chem. Eng., 24, 363-369 (2013).
24 W. K. Choi, B. J. Kim, B. G. Min, K. M. Min, and S. J. Park, Effects of sizing treatment of carbon fibers on mechanical interfacial properties of nylon 6 matrix composites, Elastom. Compos., 45, 2-6 (2010).
25 A. Fukunaga and S. Ueda, Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices, Compos. Sci. Technol., 60, 249-254 (2000).   DOI
26 S. Yumitori and Y. Nakanishi, Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix: Part 1. Compoarison between $H_2SO_4$ and NaOH solutions, Compos. A, 27, 1051-1058 (1996).   DOI
27 S. L. Chuang and N. J. Chu, Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics, J. Appl. Polym. Sci., 41, 373-382 (1990).   DOI
28 X. P. Yang, C. Z. Wang, Y. H. Yu, and S. K. Ryu, Improvement of CF/ABS composite Properties by Anodic Oxidation of Pitch based C-Type Carbon Fiber, Carbon Sci., 3, 80-84 (2002).
29 X. Liu, C. Yang, and Y. Lu, Contrastive study of anodic oxidation on carbon fibers and graphite fibers, J. Appl. Surf. Sci., 258, 4268-4275 (2012).   DOI
30 Z. Li, J. Wang, Y. Tong, and L. Xu, Anodic oxidation on structural evolution and tensile properties of polyacrylonitrile based carbon fibers with different surface morphology, J. Mater. Sci. Technol., 28, 1123-1129 (2012).   DOI
31 X. Qian, X. Wang, Q. Ouyang, Y. Chen, and Q. Yan, Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation, J. Appl. Surf. Sci., 259, 238-244 (2012).   DOI