• Title/Summary/Keyword: anode materials

Search Result 833, Processing Time 0.027 seconds

A study on the improvement of frictional performance of friction material for automobile brake by spray treatment (용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

Structural and Electrochemical Properties of Spin Coated LiCoO2 Cathode Thin Film in Lithium Secondary Batteries (스핀코팅법에 의한 리튬 2차전지용 산화물 양전극 LiCoO2 박막의 구조 및 전기화학적 특성에 대한 연구)

  • Gang, Seong-Gu;Yu, Gi-Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.243-246
    • /
    • 2006
  • The LiCoO2 thin films were prepared on the Pt/Ti/SiO2/Si substrate by spin coating using citrate sol. The citrate sol was spin-coated on substrate and dried at 380oC for 15 min. to evaporate the solvents and remove the organic materials. The as-deposited films were annealed at 750oC for 10 min. in air for crystallization. The X-ray diffraction patterns for the film have been indexed hexagonal system with space group R3m. The active area of LiCoO2 films for electrochemical test was about 11cm2. A Li foil and 1M LiClO4 in propylene carbonate(PC) and ethylene carbonate(EC) (1:1)were used as an anode and an electrolyte, respectively. The galvanostatic charge-discharge test was carried out at constant current density ranging from 5 A/cm2 in the voltage window between 4.2 and 3.0 V. The first discharge capacity of the film is 0.35Ah/cm2-m. The cycling behavior of the LiCoO2 film is also reported.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Stress-diffusion Full Coupled Multiscale Simulation Method for Battery Electrode Design (배터리 전극 설계를 위한 응력-확산 완전연계 멀티스케일 해석기법)

  • Chang, Seongmin;Moon, Janghyuk;Cho, Kyeongjae;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.409-413
    • /
    • 2013
  • In this paper, we device stress-diffusion full coupling multiscale analysis method for battery electrode simulation. In proposed method, the diffusive and mechanical properties of electrode material depend on Li concentration are estimated using density function theory(DFT) simulation. Then, stress-diffusion full coupling continuum formulation based on finite element method(FEM) is constructed with the diffusive and mechanical properties calculated from DFT simulation. Finally, silicon nanowire anode charge and discharge simulations are performed using the proposed method. Through numerical examples, the stress-diffusion full coupling method shows more resonable results than previous one way continuum analysis.

Current Sensing Atomic Force Microscopy Study of the Morphological Variation of Hydrated Pronton Exchange Membrane (Current Sensing Atomic Force Microscopy를 이용한 PEM의 수화 현상에 따른 모폴로지 변화 연구)

  • Kwon, Osung;Lee, Sangcheol;Son, ByungRak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • A proton exchange membrane is a core component in the proton exchange membrane fuel cell because the role of proton exchange membrane(PEM)is supplying proton conductivity to fuel cell, a gas separator, and insulating between an anode and cathode. Among various role of PEM, supplying proton conductivity is the most important and the proton conductivity is strongly related the structural evolution of PEM by hydration. Thus a lot of studies have done by past few decade based on small angle X-ray scattering and wide angle X-ray scattering for understanding morphological structure of the PEM. Resulting from these studies, several morphological models of hydrated PEM are proposed. Current sensing atomic force microscopy (CSAFM) can map morphology and conductance on the membrane simultaneously. It can be the best tool for studying heterogenous structured materials such as PEM. In this study, the hydration of the membrane is examined by using CSAFM. Conductance and morphological images are simultaneously mapped under different relative humidity. The conductance images, which are mapped from different relative humidity, are analyzed by statistical methode for understanding ionic channel variation in PEM.

A Study on the Treatment of soil Flushing Effluent Using Electrofloatation (전기부상법을 이용한 토양세정 유출수 처리에 관한 연구)

  • 소정현;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 2002
  • The optimal operation conditions, including voltage applied, reaction time, distance between electrodes. and electrode material. were investigated for the treatment of soil flushing effluent using electrofloatation. When 3V was applied for 1 hour, 88% oil-water separation efficiency was achieved. In case of 6V and above, 90% efficiencies were achieved. As reaction time and distance between electrodes were longer, separation efficiencies were higher and lower, respectively. Separation efficiencies for different anode materials were copper > aluminum > iron > titanium. It might result from the differences of their electrical conductivities.

Development of kW Class SOFC Systems for Combined Heat and Power Units at KEPRI

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Keun-Bae;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.772-776
    • /
    • 2008
  • The Korea Electric Power Research Institute (KEPRI) has been developing planar solid oxide fuel cells (SOFCs) and power systems for combined heat and power (CHP) units. The R&D work includes solid oxide fuel cell (SOFC) materials investigation, design and fabrication of single cells and stacks, and kW class SOFC CHP system development. Anode supported cells composed of Ni-YSZ/FL/YSZ/LSCF were enlarged up to $15{\times}15\;cm^2$ and stacks were manufactured using $10{\times}10\;cm^2$ cells and metallic interconnects such as ferritic stainless steel. The first-generation system had a 37-cell stack and an autothermal reformer for use with city gas. The system showed maximum stack power of about $1.3\;kW_{e,DC}$ and was able to recover heat of $0.57{\sim}1.2\;kW_{th}$ depending on loaded current by making hot water. The second-generation system was composed of an improved 48-cell stack and a prereformer (or steam reformer). The thermal management subsystem design including heat exchangers and insulators was also improved. The second-generation system was successfully operated without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_{e,DC}$ with hydrogen and $1.2\;kW_{e,DC}$ with city. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water. Recently KEPRI manufactured a 2kW class SOFC stack and a system by scaling up the second-generation 1kW system and will develop a 5kW class CHP system by 2010.

Diamond Schottky Barrier Diodes With Field Plate (필드 플레이트가 설계된 다이아몬드 쇼트키 장벽 다이오드)

  • Chang, Hae Nyung;Kang, Dong-Won;Ha, Min-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.659-665
    • /
    • 2017
  • Power semiconductor devices required the low on-resistance and high breakdown voltage. Wide band-gap materials opened a new technology of the power devices which promised a thin drift layer at an identical breakdown voltage. The diamond had the wide band-gap of 5.5 eV which induced the low power loss, high breakdown capability, low intrinsic carrier generation, and high operation temperature. We investigated the p-type pseudo-vertical diamond Schottky barrier diodes using a numerical simulation. The impact ionization rate was material to calculating the breakdown voltage. We revised the impact ionization rate of the diamond for adjusting the parallel-plane breakdown field at 10 MV/cm. Effects of the field plate on the breakdown voltage was also analyzed. A conventional diamond Schottky barrier diode without field plate exhibited the high forward current of 0.52 A/mm and low on-resistance of $1.71{\Omega}-mm$ at the forward voltage of 2 V. The simulated breakdown field of the conventional device was 13.3 MV/cm. The breakdown voltage of the conventional device and proposed devices with the $SiO_2$ passivation layer, anode field plate (AFP), and cathode field plate (CFP) was 680, 810, 810, and 1020 V, respectively. The AFP cannot alleviate the concentration of the electric field at the cathode edge. The CFP increased the breakdown voltage with evidences of the electric field and potential. However, we should consider the dielectric breakdown because the ideal breakdown field of the diamond is higher than that of the $SiO_2$, which is widely used as the passivation layer. The real breakdown voltage of the device with CFP decreased from 1020 to 565 V due to the dielectric breakdown.

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Synthesis and Electrochemical Characteristics of Spherical Li4Ti5O12/CNT Composite Materials for Hybrid Capacitors

  • Yang, Joeng-Jin;Kim, Yu-Ri;Jeong, Moon-Gook;Yuk, Yong-Jae;Kim, Han-Joo;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 2015
  • Spherical Li4Ti5O12 and Li4Ti5O12 carbon nanotube (CNT) composites were synthesized using a colloid system. The electrochemical properties of the composites were thoroughly examined to determine their applicability as hybrid capacitor anodes. The electrical conductivity of the spherical Li4Ti5O12-CNT composite was improved over that of the spherical Li4Ti5O12 composite. The synthesized composites were utilized as the anode of a hybrid capacitor, which was assembled with an activated carbon (AC) positive electrode. The CNTs attached on the spherical Li4Ti5O12 particles contributed to a 51% reduction of the equivalent series of resistance of the Li4Ti5O12-CNTs/AC hybrid capacitor compared to the Li4Ti5O12/AC hybrid capacitor. Moreover, the Li4Ti5O12-CNTs/AC hybrid capacitor showed a larger capacitance than the Li4Ti5O12/AC hybrid capacitor; specifically, the Li4Ti5O12-CNT/AC hybrid capacitor showed 1.6 times greater capacitance at 40 cycles with a 10 mA cm−2 loading current density.