DOI QR코드

DOI QR Code

Stress-diffusion Full Coupled Multiscale Simulation Method for Battery Electrode Design

배터리 전극 설계를 위한 응력-확산 완전연계 멀티스케일 해석기법

  • Chang, Seongmin (Department of Mechanical & Aerospace Engineering, Seoul National Univ.) ;
  • Moon, Janghyuk (Department of Mechanical & Aerospace Engineering, Seoul National Univ.) ;
  • Cho, Kyeongjae (Department of Materials Science and Engineering and Department of Physic, University of Texas at Dallas) ;
  • Cho, Maenghyo (Department of Mechanical & Aerospace Engineering, Seoul National Univ.)
  • Received : 2013.10.28
  • Accepted : 2013.11.20
  • Published : 2013.12.31

Abstract

In this paper, we device stress-diffusion full coupling multiscale analysis method for battery electrode simulation. In proposed method, the diffusive and mechanical properties of electrode material depend on Li concentration are estimated using density function theory(DFT) simulation. Then, stress-diffusion full coupling continuum formulation based on finite element method(FEM) is constructed with the diffusive and mechanical properties calculated from DFT simulation. Finally, silicon nanowire anode charge and discharge simulations are performed using the proposed method. Through numerical examples, the stress-diffusion full coupling method shows more resonable results than previous one way continuum analysis.

본 논문에서는 배터리 전극 해석을 위한 응력-확산 완전 연계 멀티스케일 해석기법을 고안하였다. 제안된 방법에서는 먼저 리튬농도에 따른 확산계수 및 기계적 물성을 계산하였다. 이를 고려하여 확산에 의한 응력뿐만 아니라 응력에 의한 확산 거동 변화까지 모두 고려한 응력-확산 완전연계 연속체 모델을 유한요소 기반으로 구성하였다. 이를 통해 실리콘 나노와이어 음극의 충/방전 전산 모사를 수행하였다. 이러한 해석결과를 통하여 기존의 확산에 의한 응력 연속체 모델보다 더 실제와 가까운 해석결과를 제안된 방법이 보여줌을 확인할 수 있었다.

Keywords

References

  1. Blochl, P.E. (1994) Projector Augmented-Wave Method, Physical Review B, 50.
  2. Byon, S.M., Lee, J.H., Kim, S.R., Jang, Y.C., Na, D.H., Lee, J.B., Lee, G.T., Song, G.H., Lee, S.J. (2009) Finite Element Based Edge Crack Analysis of Silicon-Steel Sheet in Cold Rolling, J. Comput Struct Eng., 22(6), pp.511-517.
  3. Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y. (2008) High-Performance Lithium Battery Anodes using Silicon Nanowires, Nat. Nanotechnol, 3, pp31-35. https://doi.org/10.1038/nnano.2007.411
  4. Chung, D.H, Buessem, W.R. (1968) Voigt-Reuss-Hill (Vrh) Approximation and Elastic Moduli of Polycrystalline Zno Tio2 (Rutile) and Alpha-Al2o3, J. Appl Phys., 39.
  5. Kang, K., Lee, H.S., Han, D.W., Kim, G.S., Lee, D., Lee, G., Kang, Y.M., Jo, M.H. (2010) Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-ion Battery, Appl. Phys. Lett., 96(5).
  6. Kang, K., Morgan, D., Ceder, G. (2009) First Principles Study of Li Diffusion in I-Li_{2}NiO_{2} Structure, Physical Review B, 79.
  7. Kresse, G., Furthmuller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-wave Basis Set, Physical Review B, 54(16).
  8. Lee, S.W., McDowell, M.T., Choi, J.W., Cui, Y. (2011) Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation, Nano Letters, 11, pp.3034-3039. https://doi.org/10.1021/nl201787r
  9. Peng, B., Cheng, F.Y., Tao, Z.L., Chen, J. (2010) Lithium Transport at Silicon Thin Film: Barrier for High-rate Capability Anode, J. Chem Phys., 133(5).
  10. Shin, H., Yang, S., Yu, S., Chang, S., Cho, M. (2012) A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance, J. Comput Struct Eng., 25(4), pp.315-321. https://doi.org/10.7734/COSEIK.2012.25.4.315
  11. Tarascon, J.M., Armand. M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, pp.359-367. https://doi.org/10.1038/35104644
  12. Yang, S., Yu, S., Cho, M. (2009) A Study on the Development of Multiscale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites, J. Comput Struct Eng., 22(4), pp.343-348.
  13. Zhao, K., Wang, W.L., Gregoire, J., Pharr, M., Suo, Z., Vlassak, J.J., Kaxiras, E. (2011) Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study, Nano Letters, 11, pp.2962-2967. https://doi.org/10.1021/nl201501s