Browse > Article
http://dx.doi.org/10.7734/COSEIK.2013.26.6.409

Stress-diffusion Full Coupled Multiscale Simulation Method for Battery Electrode Design  

Chang, Seongmin (Department of Mechanical & Aerospace Engineering, Seoul National Univ.)
Moon, Janghyuk (Department of Mechanical & Aerospace Engineering, Seoul National Univ.)
Cho, Kyeongjae (Department of Materials Science and Engineering and Department of Physic, University of Texas at Dallas)
Cho, Maenghyo (Department of Mechanical & Aerospace Engineering, Seoul National Univ.)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.26, no.6, 2013 , pp. 409-413 More about this Journal
Abstract
In this paper, we device stress-diffusion full coupling multiscale analysis method for battery electrode simulation. In proposed method, the diffusive and mechanical properties of electrode material depend on Li concentration are estimated using density function theory(DFT) simulation. Then, stress-diffusion full coupling continuum formulation based on finite element method(FEM) is constructed with the diffusive and mechanical properties calculated from DFT simulation. Finally, silicon nanowire anode charge and discharge simulations are performed using the proposed method. Through numerical examples, the stress-diffusion full coupling method shows more resonable results than previous one way continuum analysis.
Keywords
battery; electrode analysis multiscale; stress-diffusion coupling;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Blochl, P.E. (1994) Projector Augmented-Wave Method, Physical Review B, 50.
2 Byon, S.M., Lee, J.H., Kim, S.R., Jang, Y.C., Na, D.H., Lee, J.B., Lee, G.T., Song, G.H., Lee, S.J. (2009) Finite Element Based Edge Crack Analysis of Silicon-Steel Sheet in Cold Rolling, J. Comput Struct Eng., 22(6), pp.511-517.   과학기술학회마을
3 Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y. (2008) High-Performance Lithium Battery Anodes using Silicon Nanowires, Nat. Nanotechnol, 3, pp31-35.   DOI   ScienceOn
4 Chung, D.H, Buessem, W.R. (1968) Voigt-Reuss-Hill (Vrh) Approximation and Elastic Moduli of Polycrystalline Zno Tio2 (Rutile) and Alpha-Al2o3, J. Appl Phys., 39.
5 Kang, K., Lee, H.S., Han, D.W., Kim, G.S., Lee, D., Lee, G., Kang, Y.M., Jo, M.H. (2010) Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-ion Battery, Appl. Phys. Lett., 96(5).
6 Kang, K., Morgan, D., Ceder, G. (2009) First Principles Study of Li Diffusion in I-Li_{2}NiO_{2} Structure, Physical Review B, 79.
7 Lee, S.W., McDowell, M.T., Choi, J.W., Cui, Y. (2011) Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation, Nano Letters, 11, pp.3034-3039.   DOI   ScienceOn
8 Peng, B., Cheng, F.Y., Tao, Z.L., Chen, J. (2010) Lithium Transport at Silicon Thin Film: Barrier for High-rate Capability Anode, J. Chem Phys., 133(5).
9 Shin, H., Yang, S., Yu, S., Chang, S., Cho, M. (2012) A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance, J. Comput Struct Eng., 25(4), pp.315-321.   과학기술학회마을   DOI   ScienceOn
10 Tarascon, J.M., Armand. M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, pp.359-367.   DOI   ScienceOn
11 Yang, S., Yu, S., Cho, M. (2009) A Study on the Development of Multiscale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites, J. Comput Struct Eng., 22(4), pp.343-348.   과학기술학회마을
12 Kresse, G., Furthmuller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-wave Basis Set, Physical Review B, 54(16).
13 Zhao, K., Wang, W.L., Gregoire, J., Pharr, M., Suo, Z., Vlassak, J.J., Kaxiras, E. (2011) Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study, Nano Letters, 11, pp.2962-2967.   DOI   ScienceOn