• 제목/요약/키워드: anode material

검색결과 716건 처리시간 0.028초

Experimental Observations for Anode Optimization of Oxide Reduction Equipment

  • David Horvath;James King;Robert Hoover;Steve Warmann;Ken Marsden;Dalsung Yoon;Steven Herrmann
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.383-398
    • /
    • 2022
  • The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.

무산소동의 초정밀 절삭 특성을 이용한 아노드 및 캐비티의 가공 (Machining of Anode and Cavity applying Ultraprecision Machining Characteristics of OXFC)

  • 원종호;김주환;박순섭;김건희;김상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.922-925
    • /
    • 2002
  • Klystron which is micro wave amplifier tube are mainly used in fields of science such as accelerator, nuclear fusion, broadcasting, communication fields, and defense industry fields, tract. The quality of Klystron anode and cavity are determined by form accuracy and roughness of the worked surface. Therefore anode and cavity are restricted the from accuracy strictly and the surface roughness be under Rmax 0.03S. As a work material of anode and cavity, the oxygen-free copper, that is used for optical pares of aerospace and laser mirror is selected. An outside diameter of material is $\Phi$100 mm and an inside diameter is $\Phi$30~33 mm. In this study, to find the optimum ultra precision cuffing condition of oxygen-free copper with diamond turning machine, the surface roughness is examined for various diamond toot nose radius, main spindle speed, fred rate and depth of cut. As a result of experiment, we could machined the anode and cavity with a surface roughness within Ra 3.2 nm, a form accuracy within 0.01 $\mu\textrm{m}$.

  • PDF

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene

  • Ma, Kai
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.317-322
    • /
    • 2021
  • Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.

해양환경 변화가 알루미늄합금 희생양극의 효율에 미치는 영향에 관한 연구 (A Study on the Influence of Al Alloy Sacrificial Anode Efficiency due to Marine Environmental Variation)

  • 김도형
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.106-111
    • /
    • 2000
  • Recently it was reported that the life of Al Sacrifical anode is being used in port piers has been significantly shortened compared with the original design life (e.g. average life shortened from 20 years to 13-15 year) Those factors involving these problems mentioned above were seemed to be a quality of anode material and diverse environmental factors such as pH flow rate temperature Dissolved oxygen Chemical oxygen demand and resistivity etcm In this study flow rate and contamination degree(pH) of sea water affecting to sacrificial anode life hve been investigated in terms of electrochemical characteristics of Al alloy sacrificial anode It was known that the lifetime of Al alloy anode was shortened not only by increasing of self-corrosion quantity by varying flow rate of sea water but also by increasing corrosion current density due to the potential difference increment between Al anode and steel structure cathode by varying contamination degree of sea water. Especially when anode current density is from 1mA/cm2 to 3mA/cm2 and flow rate of sea water is under 2m/s anode current efficiency is 90% above However flow rate is over 2m/s anode current efficiency fell down sharply due to erosion corrosion as well as galvanic corrosion.

  • PDF

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

실리콘 함량에 따른 리튬이온전지용 실리콘/탄소 음극소재의 전기화학적 특성 (Electrochmical Performance of Silicon/Carbon Anode Materials for Li-ion Batteries by Silicon Content)

  • 최연지;김성훈;안욱
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.338-344
    • /
    • 2022
  • 리튬이온전지의 음극소재 연구에서 실리콘 기반의 음극 활물질 개발이 필수적이며, 탄소기반의 실리콘-탄소 복합소재의 음극 적용연구가 활발히 진행되고 있다. 다른 한편으로 반도체와 태양광전지 산업에서 폐기물로 버려지는 실리콘 자원이 증가하여 환경적 문제를 일으키기도 한다. 본 연구에서는 리튬이온전지 음극소재로서 재활용된 실리콘을 이용하여 탄소와 복합화를 이루었으며, 실리콘 음극소재의 높은 용량 유지 특성 및 사이클 안정성 향상을 위하여 재활용된 실리콘과 피치의 함량을 조절하여 복합화의 최적화 조건을 확립하였다. 실리콘 : 피치의 질량비를 1 : 1 과 2 : 1을 가진 복합체를 간단한 자가조립 방법으로 복합화 하였으며, 석유계 피치로 코팅하여 제조된 음극소재의 전기화학적 특성을 비교 조사하는 연구를 수행하였다. 제조된 실리콘-탄소 복합소재는 충·방전 동안 발생되는 실리콘의 구조적 파괴를 방지하는 방법으로 우수한 초기용량과 사이클 안정성을 달성하였으며, 재활용 실리콘의 전극소재로서의 가능성을 확인하였다.

Efficient Top-Emitting Organic Light Emitting Diode with Surface Modified Silver Anode

  • Kim, Sung-Jun;Hong, Ki-Hyon;Kim, Ki-Soo;Lee, Ill-Hwan;Lee, Jong-Lam
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.550-553
    • /
    • 2010
  • The enhancement of quantum efficiency using a surface modified Ag anode in top-emitting organic light emitting diodes (TEOLEDs) is reported. The operation voltage at the current density of $1\;mA/cm^2$ of TEOLEDs decreased from 9.3 V to 4.3 V as the surface of anode coated with $CuO_x$ layer. The work function of these structures were quantitatively determined using synchrotron radiation photoemission spectroscopy. Secondary electron emission spectra revealed that the work function of the Ag/$CuO_x$ structure is higher by 0.6 eV than that of Ag. Thus, the $CuO_x$ structure acts as a role in reducing the hole injection barrier by about 0.6 eV, resulting in a decrease of the turn-on voltage of top-emitting light emitting diodes.

도너층 CuPc의 두께변화에 따른 광기전력 효율 특성

  • 김원종;최현민;최광진;김태완;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.280-280
    • /
    • 2009
  • In a structure of ITO/CuPc/Al, we have studied that the properties of photovoltaic efficiency of copper phthalocyanine(CuPc) in donor layer using simulation. As a rusult, we have confirmed that anode current density is decreased and anode voltage is increased as increasing the thickness of CuPc. Also, when the light intensities is 10 [$mW/cm^2$], the external quantum efficiency is better than the others at the best wavelength of visible spectrum..

  • PDF

은 담지한 혹연을 부극 활물질로 이용한 Li ion 2차전지의 전기화학적 특성 연구 (The Electrochemical properties of Lithium ion Secondary Battery using Ag-deposited graphite anode)

  • 김상필;조정수;박정후;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 1998
  • New Ag-deposited graphite anodes were developed using wet chemical reduction methods for depositing Ag metal onto graphite particles. In this paper, we investigated X-ray diffraction pattern and charge-discharge behavior for Ag-deposited graphite anode. The Lithium ion cello using Ag-deposited graphite anode showed a high average discharge voltage of 3.6∼3.W and a excellent cycle ability than that of conventional graphite. Little capacity loss in this battery may be due to the highly durable Ag-deposited graphite anodes.

  • PDF

엔진피스톤링 홈의 크롬도금에 관한 연구 (A Study on Chromium Electroplating of Piston Ring Groove's Surface)

  • 문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.47-55
    • /
    • 1995
  • When the low heavy oil is using as fuel oil to the diesel engine, some problems such as corrosion resistance, wear resistance and heat resistance are happened in diesel engine's internal material, especially the adhesive wear of piston ring groove was occurred as a important problem. Therefore to prevent adhesive wear of its groove, the surface of its groove used to be electroplated with Chrominum and for its Chromium electroplating, Fe anode is being used until nowadays because of its Special shape. However in case of using Fe anode, there were some problems such as deterioation of solution, property of Chromium film, and condition of coation. In this paper Pb anode electroplated withPb to the steel plate was investigated for its Chromium electroplating for Pb's high corrosion resistance in acid solution, and Pb anode is not dissolved compared with Fe anode and deterioration degree of solution in case of Pb anode is smaller than that of Fe anode and also property of Chromium film was better than that of Fe anode. Moreover it was known that the optimum cathodic current density for Pb electroplating to steel plate as insoluable anode for Chromium coating of piston ring groove is 30mA/$cm^2$ by experimental results obtained.

  • PDF