• 제목/요약/키워드: annular sector

검색결과 33건 처리시간 0.017초

시간평균 홀로그래픽 간섭계를 이용한 환형 평판의 자유 진동 연구 (Free Vibration Analysis of Annular Sector Plates Using Time Average Holographic Interferometer)

  • 나종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.353-361
    • /
    • 1998
  • The study on the vibration characteristics of annular sector plates is important for structural engineers. In this study the vibration modes and their natural frequencies of annular sector plates clamped along the inner circumferential edge are obtained by the time average holographic interferometer according to the varying sector angle. The experimental results agree well with those obtained by the numerical analysis. The vibration characteristics of annular sector plates shows great dependence on the sector angle. The radial nodal lines converge to the center of annular sector plate.

  • PDF

Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.87-101
    • /
    • 2020
  • A multi-scale epoxy/CNT/fiberglass annular sector plate is studied in this paper in the view of determining nonlinear forced vibration characteristics. A 3D Mori-Tanaka model is employed for evaluating multi-scale material properties. Thus, all of glass fibers are assumed to have uni-direction alignment and CNTs have random diffusion. The geometry of annular sector plate can be described based on the open angle and the value of inner/outer radius. In order to solve governing equations and derive exact forced vibration curves for the multi-scale annular sector, Jacobi elliptic functions are used. Obtained results demonstrate the significance of CNT distribution, geometric nonlinearity, applied force, fiberglass volume, open angle and fiber directions on forced vibration characteristics of multi-scale annular sector plates.

Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates

  • Asemi, Kamran;Salehi, Manouchehr;Sadighi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.1067-1089
    • /
    • 2014
  • In this paper, three dimensional static and dynamic analyses of two dimensional functionally graded annular sector plates have been investigated. The material properties vary through both the radial and axial directions continuously. Graded finite element and Newmark direct integration methods have been used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good agreement.

Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Mollaee, Saeed;Barati, Mohammad Reza;Afshari, Behzad Mohasel;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 2020
  • Buckling and post-buckling behaviors of geometrically imperfect annular sector plates made from nanoparticle reinforced composites have been investigated. Two types of nanoparticles are considered including graphene oxide powders (GOPs) and silicone oxide (SiO2). Nanoparticles are considered to have uniform and functionally graded distributions within the matrix and the material properties are derived using Halpin-Tsai procedure. Annular sector plate is formulated based upon thin shell theory considering geometric nonlinearity and imperfectness. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sector plates rely on the geometric imperfection, nanoparticle type, amount of nanoparticles, sector inner/outer radius and sector open angle.

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM

  • Mohammadimehr, Mehdi;Afshari, Hasan;Salemi, M.;Torabi, K.;Mehrabi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.525-544
    • /
    • 2019
  • In the present study, buckling and free vibration analyses of annular thin sector plate made of functionally graded materials (FGMs) resting on visco-elastic Pasternak foundation, subjected to external radial, circumferential and shear in-plane loads is investigated. Material properties are assumed to vary along the thickness according to an power law with Poisson's ratio held constant. First, based on the classical plate theory (CPT), the governing equation of motion is derived using Hamilton's principle and then is solved using the generalized differential quadrature method (GDQM). Numerical results are compared to those available in the literature to validate the convergence and accuracy of the present approach. Finally, the effects of power-law exponent, ratio of radii, thickness of the plate, sector angle, and coefficients of foundation on the fundamental and higher natural frequencies of transverse vibration and critical buckling loads are considered for various boundary conditions. Also, vibration and buckling mode shapes of functionally graded (FG) sector plate have been shown in this research. One of the important obtained results from this work show that ratio of the frequency of FG annular sector plate to the corresponding values of homogeneous plate are independent from boundary conditions and frequency number.

Multiobjective optimum design of laminated composite annular sector plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.121-132
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite angle-ply annular sector plates subjected to axial uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain the optimum solutions of the design problem. The first-order shear deformation theory is used for the mathematical formulation. Finally, the effects of different weighting factors, annularity, sector angle and boundary conditions on the optimal design are investigated and the results are compared.

시간 평균 홀로그래픽 간섭계를 이용한 환형 평판의 자유 진동 연구 (Free Vibration Analysis of Annular Sector Plates Psing Pime Average Holographic Interferometry)

  • 이기백;김정훈;나종문
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.414-421
    • /
    • 1996
  • The study of the vibration characteristics of annular sector plates which are clamped along their inner circumferential edge is important for structural engineers. The present analysis consists of experimental method and numerical method. The experimental method using time-average holographic interferometry is obtained vibration modes and frequencies. The experimental results are verified by a numerical method using F.E.M. The important aspects of the present paper is the dependence of the natural frequencies and the mode shape on the annular area changing sector angle. The radial nodal lines converge to the center of the plate. As increasing sector angle, the radial modes are predominant.

  • PDF

등분포하중을 받는 등방성 환형 섹터판의 탄성 거동에 대한 해석적 연구 (Analytical Investigation on Elastic Behaviors of Isotropic Annular Sector Plates Subjected to Uniform Loading)

  • 김경식
    • 한국강구조학회 논문집
    • /
    • 제22권3호
    • /
    • pp.241-251
    • /
    • 2010
  • 본 논문에서는 등분포 하중을 받는 등방성 환형 섹터판의 지배방정식에 대한 새로운 해석적 해가 3차원 극좌표계에서 개발된다. 4차의 편미분방정식 형태를 가지는 지배방정식은 레비 타입 시리즈 해에 대한 가정과 그 후속적인 수학적 처리를 통해 4차의 상미분방정식으로 전환된다. 전환된 상미분방정식의 특성방정식에 대한 실수 영역 및 복소수 영역의 해를 해석적으로 구한 후 제차 및 비제차 방정식의 각 해의 조합으로 최종적인 지배방정식의 해가 완성된다. 개발된 해의 수렴성 및 정확성을 보여주기 위해 다양한 경계조건 및 내부 중심 각도를 가지는 판에 대한 예제 해석을 수행하였고 그 결과를 다른 해석적 연구결과와 비교하였다. 또한 개발된 해의 정확성을 확인하기 위하여 유한요소 프로그램인 ABAQUS를 이용한 탄성해석을 추가로 수행하여 그 결과를 비교하였다. 제안된 해로부터 결정된 환형 섹터판의 변위 및 모멘트 값은 여타의 해석적 및 수치적 접근방법으로 구한 값들과 비교해 본 결과 매우 높은 수준에서 일치하고 있음이 확인되었다.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.