• Title/Summary/Keyword: annual uptake

Search Result 92, Processing Time 0.029 seconds

Effect of Carbon Sequestration and Oxygen Production of Trees on Kangwon National University Campus

  • Hyeong-Uk Ahn;Yun Eui Choi;Sung-Ho Kil;Hyun-Kil Jo
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.128-139
    • /
    • 2023
  • Urban forests serve multiple purposes by providing green resting spaces and environmental benefits for city residents. In the old city center, where parks are scarce, the campus of Kangwon National University, Chuncheon, Gangwon-do, South Korea, serves as an urban forest for students, faculty, and citizens. This study aims to quantitatively analyze the environmental functions of green spaces on campus, raising awareness about their importance among campus members. The total carbon storage of campus trees was estimated at 1,653,218 kg, including 1,512,586 kg in forest areas, 131,061 kg in planting spaces around buildings, and 9,571 kg in street spaces. The annual carbon uptake of campus trees was estimated to be 39,391 kg/year, with 30,144 kg/year in forest areas, 8,017 kg/year in planting spaces around buildings, and 1,230 kg/year in horizontal spaces. In addition, annual oxygen production was estimated to be 105,044 kg/year, with 80,385 kg/year in forest areas, 21,378 kg/year in planting spaces around buildings, and 3,281 kg/year in street spaces. Furthermore, we estimated carbon emissions from the use of on-campus facilities to be 4,856,182 kg/year, while oxygen consumption by members was estimated at 53,975 kg/year. However, the campus trees supplied a sufficient amount of oxygen, which was twice the amount required by school members. The carbon uptake amount was approximately 1% of the amount of carbon emissions, resulting in a modest contribution to improving the environmental conditions of the site.

Effect of Long-Term Annual Dressing of Organic Matter on Physico-Chemical Properties and Nitrogen Uptake in the Paddy Soil of Fluvio-Marine Deposit (하해혼성 평야지 논토양에서 유기물 장기 연용이 토양의 이화학적 특성 변화 및 질소 흡수에 미치는 영향)

  • Yang, Chang-Hyu;Jeong, Ji-Ho;Kim, Taek-Kyum;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Kim, Young-Doo;Jung, Won-Kyo;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.981-986
    • /
    • 2010
  • This study was carried out to investigate the effects of fertilizer and organic resource annual dressing for 30 years of Jeonbug series (silt loam) on soil properties and rice N uptake in paddy field soil. In the study field, treatments including control (NPK), NPK+rice straw, NPK+rice straw compost and nitrogen fertilization levels at 0, 100, 150, 200, 250 kg $ha^{-1}$ have been imposed for 30 years. Soil hardness and bulk density decreased from 15.7 mm and 1.381 Mg $m^{-3}$ in the control to 12.5 mm and 1.244 Mg $m^{-3}$ in NPK+rice straw compost treatment, respectively, indicating improvement of soil physical conditions such as porosity. Co-application of straw compost with NPK also result in a better chemical properties than NPK alone as it increased available phosphate (from 96 to 133 mg $kg^{-1}$), available silicate (from 81 to 116 mg $kg^{-1}$), and cation exchange capacity (from 9.8 to 11.4 $cmol_c\;kg^{-1}$). Soil organic matter concentration of top soil (0 to 7.5 cm in depth) was higher in NPK+rice straw and NPK+rice straw compost than in control. Fertilizer N uptake amount was much higher in NPK+rice straw (nitrogen fertilization level; 250 kg $ha^{-1}$) and NPK+rice straw compost (nitrogen fertilization levels; 200, 250 kg $ha^{-1}$) plots compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Nitrogen use efficiency was showed significantly high in the NPK+rice straw compost (nitrogen fertilization levels; 100, 150 kg $ha^{-1}$) plot compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Therefore, it was suggested that application of organic inputs is helpful in improving soil fertility and physical conditions and thus in N uptake.

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

Yield and Nitrogen Uptake of Corn in Corn after Soybean Cropping

  • Seo, Jong-Ho;Lee, Ho-Jin;Lee, Jin-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Soybean can produce high-N residue due to N-fixation, so soybean rotation may increase yield of subsequent corn and reduce N fertilizer on the corn fairly. To find out the contribution of nitrogen to subsequent corn following soybean cultivation, soil nitrate, corn yield, and nitrogen uptake were measured for three continuous corn cropping years after soybean rotation. Three N rates of 0, 80, and 160 kg/ha were applied to three continuous corn following soybean cropping. At 6-leaf stage, soil nitrate amount at the soil depth of 0-30cm ranged from 60 to 80 kgN/ha higher in the first corn cropping year than that in the second and third corn cropping years. Judging from corn N status such as SPAD value, N concentration of ear-leaf and stover at silking stage, N contribution of previous soybean to corn in the first corn year was N fertilizer of approximately 80 kg N/ha. Stover N uptake at silking stage increased from 47 to 52 kg N/ha at the 0, and 80 kg N/ha of N rates in the first corn cropping year compared with those in the second and third corn cropping years. Corn grain yield at the 0 kg N/ha of N rate was 6-7 ton/ha higher in the first corn cropping year than that in the second and third corn cropping years, respectively. When compared the first corn year following soybean cropping with the second and third corn cropping years, N uptake of grain and stover at harvest with low N rates such as 0 and 80 kg N/ha increased from 45 to 67kg N/ha, from 35 to 60 kg N/ha, respectively. N uptake of whole plant by soybean rotation increased from 93 to 118 kg N/ha in the first year compared with that in the second and third corn cropping years. However, the N contribution by soybean cropping was small in the second and third continuous corn cropping years. Therefore, it was concluded that the nitrogen fertilizer of 80-100 kg N/ha in the first corn cropping year could be saved by soybean rotation and annual alternative corn-soybean rotation could be the best rotation system.

  • PDF

The issue of vaccine refusal: the study of a risky behavior

  • Mikhail Osadchuk;Yuliya Tikhonova;Mariya Krivetskaya
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.216-223
    • /
    • 2023
  • Purpose: Influenza is the most common seasonal infectious disease that causes permanent social, economic, and medical problems worldwide. Therefore, the most effective way to prevent influenza is through vaccines. The aim of this study is to identify the influence of factors that determine the refusal of influenza vaccine among three subjects groups. Materials and Methods: A survey was conducted amongst the three high-risk groups in 2018-2019 (Moscow, Russia). The survey involved 1,620 parents and pregnant women (group 1), 324 doctors (group 2), and 433 students (group 3). Poor vaccine uptake was observed among respondents in all three groups. Results: According to the survey results, only 22.2% of children and 13.8% of adults were vaccinated against influenza. Group 2 showed increased rates with 36.7% of vaccinated adults and 58.7% of children. The lowest adherence to annual vaccinations was recorded in group 3 (only 17.3%). There is also a negative correlation between adherence to vaccination and smoking (-0.66), unhealthy diet (-0.73), poor oral hygiene (-0.61), and insufficient awareness of the need for influenza vaccine as well (-0.81). Conclusion: Thus, a general lack of vaccination awareness has a fundamental role in forming a negative attitude toward influenza vaccine. It is necessary to conduct research to promote vaccination against influenza to improve vaccine uptake among high-risk groups, particularly students.

Selection of Poplar Clones for Short Rotation Coppice in a Riparian Area (수변지 단벌기 목재에너지림에 적합한 포플러 클론 선발)

  • Kim, Hyun-Chul;Lee, Sol-Ji;Lee, Wi-Young;Kang, Jun-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.103-107
    • /
    • 2016
  • This study aims to select the most appropriate poplar clones for planting on short rotation coppice poplar plantations in a riparian area. The research investigated biomass production, nitrogen and carbon absorption with 2-year-old poplar (Populus spp.) clones including P. euramericana clone Eco28, P. deltoides hybrid clone 97-18, and P. alba ${\times}$ P. glandulosa hybrid clone 72-30. The average number of stems per stump was five and P. euramericana clone Eco28 had the greatest average number of live stems per stump with 5.9. The average stem diameter was 23.2 mm, and P. deltoides hybrid clone 97-18 achieved the largest average diameter with 25.4 mm. The average annual above-ground biomass production of Populus deltoides hybrid clone 97-18 was 16.1 ton/ha/year, followed by P. alba ${\times}$ P. glandulosa hybrid clone 72-30 and P. euramericana clone Eco28, 12.3 and 5.4 ton/ha/year, respectively. The average annual nitrogen uptake of poplar clones was 46.5 kg/ha/year. P. alba ${\times}$ P. glandulosa hybrid clone 72-30 had the highest average, 63.1 kg/ha/year. The average of annual carbon absorption was estimated 5.3 ton/ha/year and Populus deltoides hybrid clone 97-18 showed the best results with 7.7 ton/ha/year. Based on the results given above, P. deltoides hybrid aspen clone 97-18 is considered as the most suitable poplar clones for wood biomass production on riparian areas.

Improvement on the KFOOD Code for More Realistic Assessment of the Annual Food Chain Radiation Dose Due to Operating Nuclear Facilities (가동중 원자력 시설에 의한 년간 섭식경로 피폭선량 평가의 현실성 제고를 위한 KFOOD 코드의 개선)

  • Park, Yong-Ho;Lee, Chang-Woo;Kim, Jin-Kyu;Lee, Myung-Ho;Lee, Jeong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.437-446
    • /
    • 1993
  • More realistic calculation models for evaluating man's annual intakes of radionuclides released from operating nuclear facilities were established. For the application of these models, the harvest years of food and feed crops consumed in the year of dose assessment and every year's average concentrations of a radionuclide in air and in water for the whole period of real operation had to be taken into account. KFOOD, an existing equilibrium food chain computer code for the Korean dose assessment, was modified according to the models. Sample runs of the modified code on the assumption of a constant release during 10 years' operation were made with three kinds of the input data files enabling the dose assessment in the improved method, the KFOOD method and another existing method, respectively, and the results were compared. Annual committed effective doses to Korean adult by intakes of Mn-54, Co-60, Sr-90, I-131 and Cs-137 calculated in the improved method were about 11, 2, 5, 60 and 3%, respectively, lower than the corresponding KFOOD dose. To the intakes of the radionuclides except Sr-90 evaluated in the improved method, foliar uptake contributed much more than root uptake did but, in the case of Sr-90, the result was opposite.

  • PDF

Evaluation of Modified Soil-Plant-Atmosphere Model (mSPA) to Simulate Net Ecosystem Carbon Exchange Over a Deciduous Forest at Gwangneung in 2006 (2006년 광릉 활엽수림에서 순 생태계 탄소 교환량의 모의에 대한 modified Soil-Plant-Atmosphere (mSPA) 모델의 평가)

  • Lee, Young-Hee;Lim, Hee-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.87-99
    • /
    • 2009
  • We evaluated modified Soil-Plant-Atmosphere model's performance to simulate the seasonal variation of net ecosystem exchange (NEE) of carbon and examined the critical controlling mechanism on carbon exchange using the model over a deciduous forest at Gwangnung in 2006. The modified Soil-Plant-Atmosphere (mSPA) model was calibrated to capture the mean NEE during the daytime (1000-1400 LST) and used to simulate gross primary productivity (GPP). Ecosystem respiration ($R_e$) has been estimated using an empirical formula developed at this site. The simulation results indicated that the daytime mean stomatal conductance was highly correlated with daily insolation in the summer. Low stomatal conductance in high insolation occurred on the days with low temperature rather than with high vapor pressure deficit. It suggests that the forest rarely experienced water stress in the summer of 2006. The model captured the observed bimodal seasonal variation with a mid-season depression of carbon uptake. The model estimates of annual GPP, $R_e$ and NEE were $964\;gC\;m^{-2}\;yr^{-1}$, $733\;gC\;m^{-2}\;yr^{-1}$, and $-231\;gCm\;^{-2}\;yr^{-1}$, respectively. Compared to the observed annual NEE, the modeled estimates showed more carbon uptake by about $140\;gC\;m^{-2}\;yr^{-1}$. The uncertainty of the estimate of annual NEE in a complex terrain is discussed.

Input and Output Budgets for Nitrogen of Paddy Field in South Korea

  • Jung, Goo-Bok;Hong, Seung-Chang;Kim, Min-Kyeong;Kim, Myung-Hyun;Choi, Soon-Kun;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • The main objective of this research was to estimate the total mass of nitrogen discharged from various sources in paddy field area of South Korea in 2010 and 2013. Input and output budgets for nitrogen were estimated by mass balance approach. The mass balance approach reduces the effect of flow variations, and the large scale approach minimizes local effects, resulting in easier and faster establishment of strategy for nonpoint pollution problems. Nitrogen inputs were chemical fertilizer, compost, atmospheric deposition, biological fixation, and agricultural water, while crop uptake, denitrification, volatilization, and infiltration were nitrogen outputs. The estimated total nitrogen inputs for paddy field in South Korea were $266,211ton\;yr^{-1}$, $260,729ton\;yr^{-1}$, while those of total nitrogen outputs were $168,463ton\;yr^{-1}$, $164,994ton\;yr^{-1}$ in 2010 and 2013, respectively. Annual amounts of potential nitrogen outflow from paddy field were $97,748ton\;yr^{-1}$, $95,735ton\;yr^{-1}$ in 2010 and 2013. Also, annual rate of potential nitrogen outflow were 36.7%, 36.7% in 2010 and 2013, respectively.

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.