• 제목/요약/키워드: annual rainfall

검색결과 580건 처리시간 0.023초

농업용수 수요량의 지역적 특성 조사 연구(관개배수 \circled1) (A Study on the Regional Property for the Agricultural Water Demand)

  • 김선주;이광야;여운식;박재흥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.120-125
    • /
    • 2000
  • This study analyzes agricultural water demand nationwide which calculated by the estimation system for agricultural water demand(ESAD) with the data are observed in the other Studies. The results are as follows. Maximum, minimum and average values of annual evapotranspiration in paddy in 1,767 boundaries covering all the country are estimated as 819.2mm, 595.2mm and 702.9mm respectively. In the case of transplant seeding, the annual effective rainfall is estimated as 834.7mm to 464.3mm, while the average is 635.3mm. The amount of effective rainfall is largest in case of transplant seedlings and then come watered direct seeding and dry direct seeding regardless of region. Maximum, minimum and average values of annual evapotranspiration in upland in 1,767 boundaries are estimated as 659.97mm, 129.3mm and 411.8mm respectively. The annual effective rainfall is estimated as 607.2mm to 68.3mm while the average is 257.4mm. infiltration ratio in paddy in 1,767 boundaries applied in ESAD is 5.06mm/day in average, varying from 12.0mm/day to 2.0mm/day. Applied conveyance loss is 12.8% in average, varying from 18.0% to 8.0%.

  • PDF

Scale-Invariance 기법을 이용한 IDF 곡선의 기후변화 영향 분석: RCP 8.5를 중심으로 (Analysis of the effect of climate change on IDF curves using scale-invariance technique: focus on RCP 8.5)

  • 최정현;이옥정;김상단
    • 한국수자원학회논문집
    • /
    • 제49권12호
    • /
    • pp.995-1006
    • /
    • 2016
  • IPCC 제5차 평가보고서에 따르면 극한강우의 빈도 및 강도가 증가할 가능성이 매우 높을 것으로 예측되고 있다. 실제로 극한강우에 따른 침수피해가 증가하고 있으며, 이에 따라 기후변화의 영향을 반영한 미래 확률강우량 추정이 필요하다. 본 연구에서는 기후변화 RCP 8.5 시나리오로부터 도출된 미래 연 최대 일강수량 자료의 추세분석과 scale-invariance 기법을 이용하여 미래 확률강우량을 추정하였다. 먼저, 기상청 관할 60개 기상관측소의 관측 강우자료를 이용하여 관측소별로 스케일 특성을 검토한 후, 현재기후 모의자료를 이용하여 scale-invariance 기법의 적용가능성을 검증하였다. 그 후, 미래 일 강수량 시계열을 scale-invariance 특성에 따라 유도된 IDF 곡선식에 적용하여 기후변화의 영향을 반영한 지속시간별 확률강우량을 추정하였다. 대부분의 지점에서 확률강우량이 증가할 것으로 예측되었으나, 일부 지역의 경우에는 감소할 가능성도 있음을 살펴볼 수 있다.

최근 강수 자료를 이용한 범용토양유실공식의 강우침식능인자 정의에 관한 연구 (A Study to Determine the Rainfall Erosivity Factor of Universal Soil Loss Equation using Recent Rainfall Data)

  • 김종건;장진욱;성각규;차상선;박윤식
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.13-20
    • /
    • 2018
  • Universal Soil Loss Equation (USLE) has been widely used to estimate potential soil loss because USLE is a simple and reliable method. The rainfall erosivity factor (R factor) explains rainfall characteristics. R factors, cited in the Bulletin on the Survey of the Erosion of Topsoil of the Ministry of Environment in the Republic of Korea, are too outdated to represent current rainfall patterns in the Republic of Korea. Rainfall datasets at one minute intervals from 2013 to 2017 were collected from fifty rainfall gauge stations to update R factors considering current rainfall condition. The updated R factors in this study were compared to the previous R factors which were calculated using the data from 1973 to 1996. The coefficient of determination between the updated and the previous R factors shows 0.374, which means the correlation is not significant. Therefore, it was concluded that the previous R factors might not explain current rainfall conditions. The other remarkable result was that regression equations using annual rainfall data might be inappropriate to estimate reasonable R factors because the correlation between annual rainfall and the R factors was generally unsatisfy.

A Space Model to Annual Rainfall in South Korea

  • Lee, Eui-Kyoo
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.445-456
    • /
    • 2003
  • Spatial data are usually obtained at selected locations even though they are potentially available at all locations in a continuous region. Moreover the monitoring locations are clustered in some regions, sparse in other regions. One important goal of spatial data analysis is to predict unknown response values at any location throughout a region of interest. Thus, an appropriate space model should be set up and their estimates and predictions must be accompanied by measures of uncertainty. In this study we see that a space model proposed allows a best interpolation to annual rainfall data in South Korea.

농촌 소규모 유역의 지하수 적정개발량 평가 (Evaluation of Optimal Amount of Groundwater Development for a Rural Small Watershed)

  • 박기중;손성호;정상옥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.307-310
    • /
    • 2003
  • The purpose of this study was to obtain optimal amount of groundwater development for a rural small watershed. The optimal amount of groundwater development in this experimental watershed is 13.8 %($0.67{\times}10^6m^3$) of the annual rainfall by SCS-CN method. The Visual MODFLOW analyses showed the optimal amount of groundwater development were 14.9 %($0.72{\times}10^6m^3$) of the annual rainfall.

  • PDF

기저유출량추정을 위한 강우 지연반응모형 개발 (Development of Rainfall - Delayed Response Model for the Calculation of Baseflow Proportion)

  • 홍종운;최예환
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.31-43
    • /
    • 1988
  • The Purpose of this study is to develop the rainfall-delayed response model (RDR Model) which influences the baseflow proportion of rivers as a result of the antecedent precipitation of the previous several months. The assesment of accurate baseflows in the rivers is one of the most important elements for the planning of seasonal water supply for agriculture, water resources development, hydrological studies for the availability of water and design criteria for various irrigation facilities. The Palukan river gauging site which is located in the Pulukan catchment on Bali Island, Indonesia was selected to develop this model. The basic data which has been used comprises the available historic flow records at 19 hydrologic gauging stations and 77 rainfall stations on Bali Island in the study. The methology adopted for the derivation of the RDR model was the water balance equation which is commonly used for any natural catcbment ie.P=R+(catchment losses) -R+(ET+DP+DSM+DGW). The catchment losses consist of evapotranspiration, deep percolation. change in soil moisture, and change in groundwater storage. The catchment areal rainfall has been generated by applying the combination method of Thiessen polygon and Isohyetal lines in the studies. The results obtained from the studies may be summarized as follows ; 1. The rainfall-runoff relationship derived from the water balance equation is as shown below, assuming a relationship of the form Y=AX+B. Finally these two equations for the annual runoff were derived ; ARO$_1$=0.855 ARF-821, ARF>=l,400mm ARO$_2$=0.290ARF- 33, ARF<1,400mm 2. It was found that the correction of observed precipitation by a combination of Thiessen polygons and Isohyetal lines gave good correlation. 3. Analysis of historic flow data and rainfall, shows that surface runoff and base flow are 52 % and 48% (equivalent to 59.4 mm) of the annual runoff, respectively. 4. Among the eight trial RDR models run, Model C provided the correlation with historic flow data. The number of months over which baseflow is distributed and the relative proportions of rainfall contributing in each month, were estimated by performing several trial runs using data for the Pulukan catchment These resulted in a value for N of 4 months with contributing proportions of 0.45, 0.50, 0.03 and 0.02. Thus the baseflow in any month is given by : P$_1$(n) =0.45 P(n) +0.50 P(n-I ) +0.03 P(n-$_2$) +0.02 P(n-$_3$) 5. The RDR model test gave estimated flows within +3.4 % and -1.0 % of the observed flows. 6. In the case of 3 consecutive no rain months, it was verified that 2.8 % of the dependable annual flow will be carried over the following year and 5.8 % of the potential annual baseflow will be transfered to the next year as a result of the rainfall-delayed response. The results of evaluating the pefformance of the RDR Model was generally satisfactory.

  • PDF

19세기 공주감영 측우기 강우량 18년 복원 (Restoration of 18 Years Rainfall Measured by Chugugi in Gongju, Korea during the 19th Century)

  • 부경온;권원태;김상원;이현정
    • 대기
    • /
    • 제16권4호
    • /
    • pp.343-350
    • /
    • 2006
  • The rainfall amount measured by Chugugi at Gongju was found in "Gaksadeungnok". Gaksadeungnok is ancient documents from governmental offices in Joseon dynasty. Rainfall data at Gongju are restored for 18 years of 19th century. In 1871, total rainfall amount is 1,338 mm. It is different by about 11% in the amount compared with Seoul Chugugi rainfall in 1871 and Daejeon modern raingauge measurement result during the 30 years (1971-2000). Annual march of monthly rainfall data at Gongju is similar with that of Seoul. Based on the results, restored rainfall at Gongju is consistent with Seoul Chugugi rainfall data. The rainfall amount restored in this study is measured by Chugugi which was installed at Gongju, in Chung-Cheong province. Furthermore, Gaksadeungnok includes rainfall amount reports by agricultural tool measurement in addition to Chugugi measurement. These facts prove a network of rain gauge in Joseon dynasty.

적용 기법에 따른 강우침식인자 산정 결과의 시공간적 불확실성 (Spatiotemporal Uncertainty of Rainfall Erosivity Factor Estimated Using Different Methodologies)

  • 황세운;김동현;신상민;유승환
    • 한국농공학회논문집
    • /
    • 제58권6호
    • /
    • pp.55-69
    • /
    • 2016
  • RUSLE (Revised Universal Soil Loss Equation) is the empirical formular widely used to estimate rates of soil erosion caused by rainfall and associated overland flow. Among the factors considered in RUSLE, rainfall erosivity factor (R factor) is the major one derived by rainfall intensity and characteristics of rainfall event. There has been developed various methods to estimate R factor, such as energy based methods considering physical schemes of soil erosion and simple methods using the empirical relationship between soil erosion and annual total rainfall. This study is aimed to quantitatively evaluate the variation among the R factors estimated using different methods for South Korea. Station based observation (minutely rainfall data) were collected for 72 stations to investigate the characteristics of rainfall events over the country and similarity and differentness of R factors calculated by each method were compared in various ways. As results use of simple methods generally provided greater R factors comparing to those for energy based methods by 76 % on average and also overestimated the range of factors using different equations. The variation coefficient of annual R factors was calculated as 0.27 on average and the results significantly varied by the stations. Additionally the study demonstrated the rank of methods that would provide exclusive results comparing to others for each station. As it is difficult to find universal way to estimate R factors for specific regions, the efforts to validate and integrate various methods are required to improve the applicability and accuracy of soil erosion estimation.

기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용 (Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change)

  • 김영규;손민우
    • 대기
    • /
    • 제32권1호
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

연최대치계열과 비연초과치계열으로부터 산정한 확률강우량의 비교·분석 (Comparison of Design Rainfalls From the Annual Maximum and the Non-annual Exceedance Series)

  • 박예준;권현한;정은성;김태웅
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.469-478
    • /
    • 2014
  • 확률수문량을 산정하기 위해서 실무에서 많이 사용하는 연최대치 계열은 자료의 구축이 간편한 장점이 있지만, 우리나라에서 연최대치 계열을 이용하기에는 자료의 수가 매우 제한적이다. 특히, 적은 관측자료를 바탕으로 확률강우량 또는 설계홍수량을 추정할 경우 과다산정을 할 가능성이 매우 높다. 본 연구에서는 기상청에서 제공하는 1973년부터 2012년까지 총 40년간의 관측자료를 대상으로 독립호우사상을 구분하고, 연최대치 계열과 비연초과치 계열을 구성한 후, 연최대치 계열과 비연초과치 계열로부터 산정된 확률강우량의 상관성을 분석하고, 적은 관측자료를 가지고 지점빈도해석을 수행하여 확률강우량을 추정할 수 있는 방법을 제안하였다.