• 제목/요약/키워드: annual precipitation

검색결과 611건 처리시간 0.033초

Relative contributions of weather systems to the changes of annual and extreme precipitation with global warming

  • Utsumi, Nobuyuki;Kim, Hyungjun;Kanae, Shinjiro;Oki, Taikan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.234-234
    • /
    • 2015
  • The global patterns of annual and extreme precipitation are projected to be altered by climate change. There are various weather systems which bring precipitation (e.g. tropical cyclone, extratropical cyclone, etc.). It is possible in some regions that multiple weather systems affect the changes of precipitation. However, previous studies have assessed only the changes of precipitation associated with individual weather systems. The relative contributions of the weather systems to the changes of precipitation have not been quantified yet. Also, the changes of the relative importance of weather systems have not been assessed. This study present the quantitative estimates of 1) the relative contributions of weather systems (tropical cyclone (TC), extratropical cyclone (ExC), and "others") to the future changes of annual and extreme precipitation and 2) the changes of the proportions of precipitation associated with each weather system in annual and extreme precipitation based on CMIP5 generation GCM outputs. Weather systems are objectively detected from twelve GCM outputs and six models are selected for further analysis considering the reproducibility of weather systems. In general, the weather system which is dominant in terms of producing precipitation in the present climate contributes the most to the changes of annual and extreme precipitation in each region. However, there are exceptions for the tendency. In East Asia, "others", which ranks the second in the proportion of annual precipitation in present climate, has the largest contribution to the increase of annual precipitation. It was found that the increase of the "others" annual precipitation in East Asia is mainly explained by the changes of that in summer season (JJA), most of which can be regarded as the summer monsoon precipitation. In Southeast Asia, "others" precipitation, the second dominant system in the present climate, has the largest contribution to the changes of very heavy precipitation (>99.9 percentile daily precipitation of historical period). Notable changes of the proportions of precipitation associated with each weather system are found mainly in subtropics, which can be regarded as the "hotspot" of the precipitation regime shift.

  • PDF

연강수량 및 클러스터 기법에 의한 강수의 지역화 분석(수공) (Regional Analysis of Precipitation using Mean Annual Precipitation and Cluster Methods)

  • 이순혁;맹승진;류경식;지호근
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.397-404
    • /
    • 2000
  • A total of 65 rain gauges with Automatic Weather Station(AWS) were used to regional analysis of precipitation. Nine cluster regions were identified using geographical locations, maximum, mean, standard deviation of 1 day maximum rainfalls, mean annual precipitation and rainfall of rainy season in Korea. The mean annual precipitation, geographical locations, and the synoptic generating mechanisms were used to identify th five climatological homogeneous regions in Korea. Number of final regions by mean annual precipitation and cluster methods divided into five regions in Korea.

  • PDF

강수일과 그 연변화형에 의한 한국의 지역구분 (Regional Division of Korea by Precipitation Days and Annual Change Pattern)

  • 박현욱
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.1-1
    • /
    • 1995
  • An attempt was made to study the subdivision of Korea by the annual amount and the annual change pattern of monthly precipitation days(that is one of the important elements of the precipitation characteristics), using the mean values for the years 1961-1990 at the 68 stations. The amplitudes of annual change were normalized and using these values, the principal component analysis was applied to determine the annual change patterns. The results show that they are expressed by the combinations of the three change patterns in almost whole regions of Korea. As a result,the annual change pattern of precipitation days in Korea is classified into 8 types from A to e,in detail, 36 types from A0 to e$\circled2$.And regional division of precipitation days in Korea is divided into 13 regions from I a to IIIC,into detail, 41 regions from I no to IIICl.

강수일과 그 연변화형에 의한 한국의 지역구분 (Regional Division of Korea by Precipitation Days and Annual Change Pattern)

  • 박현욱
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.387-402
    • /
    • 1995
  • An attempt was made to study the subdivision of Korea by the annual amount and the annual change pattern of monthly precipitation days(that is one of the important elements of the precipitation characteristics), using the mean values for the years 1961-1990 at the 68 stations. The amplitudes of annual change were normalized and using these values, the principal component analysis was applied to determine the annual change patterns. The results show that they are expressed by the combinations of the three change patterns in almost whole regions of Korea. As a result, the annual change pattern of precipitation days in Korea is classified into 8 types from A to e, in detail, 36 types from A0 to e$\circled2$.And regional division of precipitation days in Korea is divided into 13 regions from I a to IIIC, into detail, 41 regions from I no to IIICl.

  • PDF

부산지방 강수량의 변화시점에 관한 통계적 접근 (The Statistical Approaches on the Change Point Problem Precipitation in the Pusan Area)

  • 박종길;석경하
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 1998
  • This paper alms to estimate the change point of the precipitation in Pusan area using the several statistical approaches. The data concerning rainfall are extracted from the annual climatological report and monthly weather report issued by the Korean Meteorological Administration. The average annual precipitation at Pusan is 1471.6 mm, with a standard deviation of 406.0 mm, less than the normal(1486.0 mm). The trend of the annual precipitation is continuously decreasing after 1991 as a change point. And the statistical tests such as t-test and Wilcoxon rank sum test reveals that the average annual precipitation of after 1991 is less than that of before 1991 at 10% significance level. And the mean gnu성 precipitation In Kyongnam districts is also continuously decreasing after 1991 same as Pusan.

  • PDF

우리나라 여름철 강수량의 기후적 분포 특성 (Climatological Features of Summer Precipitation in Korea)

  • 조하만;최영진;권효정
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.247-256
    • /
    • 1997
  • 1961년 이전에 관측이 시작되어 30년 이상의 관측자료가 있는 기상청의 15개 관측소의 강수량 자료를 이용하여 우리나라의 여름철 강수량 분포 특성을 조사하였다. 특히 이 연구에서는 우리나라 강수량 기후 평년값을 이용하여 기후적 특성을 조사하였으며, 지역별로 연 강수량, 여름철 강수량, 장마기간중 강수량의 연도별 변동을 비교 분석하고 그 상관을 조사하였다. 대체로 우리나라의 경우 연 강수량의 반 이상이 6, 7, 8월의 여름철에 집중되어 있고, 또 이 여름철 강수량은 장마에 크게 영향을 받는다. 또 지역별로 여름철 강수량 및 장마가 연 강수량에 미치는 기여도를 조사한 결과 서울을 비롯한 중서부 내륙지방이 장마의 영향을 가장 많이 받으며 동해안 중북부 지역과 제주도 지역은 상대적으로 장마의 영향이 적고, 국지적인 지형적 영향을 많이 받는 것으로 나타났다. 또한 우리나라의 경우 강수량의 연도별 변동이 심한 것으로 나타났으며, 특히 연 강수량보다 여름철 강수량과 장마기간중 강수량의 변화가 더 심한 것으로 나타났다. 따라서 국가 수자원 문제와 관련하여 연 강수량의 변동을 파악하기 위해서는 여름철 강수량의 변동에 대한 이해가 중요하며 아울러 장마의 특성 즉 몬순에 대한 파악이 함께 이루어져야 한다.

  • PDF

주기성 함수를 이용하여 연강우와 연기온변화의 주기발견에 관한 연구 (The Study of Periodicity of Annual Precipitation And Annual Temperature By The Periodic Function)

  • 박성우
    • 한국농공학회지
    • /
    • 제6권1호
    • /
    • pp.737-749
    • /
    • 1964
  • This is an attempt to find out the periodicity of the natural hydrological phenomena by the function of vibration periodicity, under the assumption that the phenomena are periodic. The result of this study at Suwon is as foIlows: 1. Annual precipitation and tota1 precipitation during summer season have the periodicity of five years. 2. Annual temperature and tota1 temperature during winter season have the periodicity of seven years. 3. The regulation curve equations of the above vibration phenomena are as foIlows: a Annual precipitation. Y = 1149-250cos2/5${\PI}$t-33 sin 2/5 t b. Total precipitation during summer season. Y=212'.9+33.06sin (2/5${\PI}$t+$88^{\circ}$13') c. Annual temperature. Y= 140.3+3.3 sin (2/7${\PI}$t+ $154^{\circ}C$55')

  • PDF

설악산 지역의 Tree-ring 자료를 이용한 연 강수량 재생성 (Annual Precipitation Reconstruction Based on Tree-ring Data at Seorak)

  • 곽재원;한희찬;이민정;김형수;문장원
    • 한국물환경학회지
    • /
    • 제31권1호
    • /
    • pp.19-28
    • /
    • 2015
  • The purpose of this research is reconstruction of annual precipitation based on Tree-ring series at Seorak mountain and examine its effectiveness. To do so we performed nonlinear time series characteristics test of Tree-ring series and reconstructed annual precipitation of Gangneung from 1687 to 1911 using Artificial neural network and Nonlinear autoregressive exogeneous input (NARX) model which reflects stochastic properties. As a result, Tree-ring series at Seorak Mountain shows nonlinear time series property and reconstructed annual precipitation series drawn from NARX is similar in statistical characteristics of observed annual time series.

Assessment of GCM and Scenario Uncertainties under Future Climate Change Conditions

  • Jang, S.;Hwang, M.;Park, J.;Lim, K.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.658-659
    • /
    • 2015
  • GCM and scenario uncertainties are first investigated for 5 major watersheds (Han River, Paldang dam, Namhan River, Bukhan River and Imjin River watersheds). As a result of this study, it is found that CCSM3-based annual precipitation increases linearly with respect to the 10-year moving average values while CSIRO-based precipitation does not show much of trend. The results from annual DJF mean precipitation show a similar trend with respect to their 10-year moving average values. Both CCSM3- and CSIRO-based annual JJA mean precipitation do not show much of trend toward 21st century. In general, CCSM3-based precipitation values are slightly higher than CSIRO-based values with respect to their annual and annual JJA mean precipitation values, but CSIRO-based annual DJF mean precipitation values are slightly higher than CCSM3-based values. In case of mean air temperature between CCSM3 and CSIRO during 21st century, all of results show a clear trend in warming with the passage of time for 5 watersheds. However the upward trends from CCSM3-based values slow down toward end of 21stcentury while CSRIO-based values increases almost linearly.

  • PDF

경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성 (The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea)

  • 박종길;이부용
    • 한국환경과학회지
    • /
    • 제2권3호
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF