• Title/Summary/Keyword: annual minimum flow

Search Result 29, Processing Time 0.021 seconds

Proposal and Application of Water Deficit-Duration-Frequency Curve using Threshold Level Method (임계수준 방법을 이용한 물 부족량-지속기간-빈도 곡선의 제안 및 적용)

  • Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.997-1005
    • /
    • 2014
  • This study evaluated hydrological drought the using the annual minimum flow and the annual maximum deficit method and proposed the new concept of water deficit-duration-frequency curves similar to rainfall intensity-duration-frequency curves. The analysis results of the annual minimum flow, the return periods of hydrological drought in the most duration of 1989 and 1996yr were the longest. The analysis results of the annual maximum deficit, the return periods of 60-days and 90-day deficit which are relatively short duration were the longest in 1995yr, about 35-year, Hydrological drought lasted longer was in 1995, the return period was about 20-year. Though duration as well as magnitude is a key variable in drought analysis, it was found that the method using the annual minimum flow duration not distinguish duration.

Hydrological Studies on the best fitting distribution and probable minimum flow for the extreme values of discharge (極値流量의 最適分布型과 極値確率 流量에 關한 水文學的 硏究 -錦江流域의 渴水量을 中心으로-)

  • Lee, Soon-Hyuk;Han, Chung-Suck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.4
    • /
    • pp.108-117
    • /
    • 1979
  • In order to obtain the basic data for design of water structures which can be contributed to the planning of water use. Best fitted distribution function and the equations for the probable minimum flow were derived to the annual minimum flow of five subwatersheds along Geum River basin. The result were analyzed and summarized as follows. 1. Type III extremal distribution was considered as a best fit one among some other distributions such as exponential and two parameter lognormal distribution by $x^2$-goodness of fit test. 2. The minimum flow are analyzed by Type III extremal distribution which contains a shape parameter $\lambda$, a location parameter ${\beta}$ and a minimum drought $\gamma$. If a minimum drought $\gamma=0$, equations for the probable minimum flow, $D_T$, were derived as $D_T={\beta}e^{\lambda}1^{y'}$, with two parameters and as $D_T=\gamma+(\^{\beta}-\gamma)e^{{\lambda}y'}$ with three parameters in case of a minimum drought ${\gamma}>0$ respectively. 3. Probable minimum flow following the return periods for each stations were also obtained by above mentioned equations. Frequency curves for each station are drawn in the text. 4. Mathematical equation with three parameters is more suitable one than that of two parameters if much difference exist between the maximum and the minimum value among observed data.

  • PDF

Probability Funetion of Best Fit to Distribution of Extremal Minimum Flow and Estimation of Probable Drought Flow (극소치유량에 대한 적정분포형의 설정과 확률갈수량의 산정)

  • 김지학;이순탁
    • Water for future
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 1975
  • In this paper the authors established the best fit distribution function by applying the concept of probabiaity to the annual minimum flow of nine areas along the Nakdong river basin which is one of the largest Korean rivers and calculated the probable minimum flow suitable to those distribution function. Lastly, the authors tried to establish the best method to estimate the probable minimun flow by comparing some frequency analysis methods. The results obtained are as follows (1) It was considered that the extremal distribution type III was the most suitable one in the distributional types as a result of the comparision with Exponential distribution, Log-Normal distribution, Extremal distribution type-III and so on. (2) It was found that the formula of extremal distribution type-II for the estimation of probable minimum flow gave the best result in deciding the probable minimum flow of the Nakdong river basin. Therfore, it is recommended that the probable minimum flow should be estimated by using the extremal distribution type-III method. (3) It could be understood that in the probable minimum flow the average non-excessive probability appeared to be $Po{\fallingdotseq}1-\frac{1}{2T}$ and gave the same values of the probable variable without any difference in the various methods of plotting technique.

  • PDF

Assessment of environmental flows using hydrological methods for Krishna River, India

  • Uday Kumar, A.;Jayakumar, K.V.
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.161-175
    • /
    • 2018
  • Krishna River is significantly affected due to Srisailam dam from past 30 years. The impact of this hydraulic structure drastically reduced the minimum flow regime on the downstream, which made the river nearing to decaying stage. In the present paper, Environmental Flow called minimum flow values released for the dam are estimated with the help of three hydrological methods viz., Range of variability Approach (RVA), Desktop Reserve Model (DRM), and Global Environmental Flow Calculator (GEFC). DRM method suggested considering the intermediate values obtained from among the three methods to preserve the ecosystem on the downstream of the river, which amounts to an average annual allocation of 9378 Million Cubic Meter (MCM) which is equal to 23.11% of mean annual flow (MAF). In this regard GEFC and RVA methods accounted for 22% and 31.04% of MAF respectively. The results indicate that current reservoir operation policy is causing a severe hydrological alteration in the high flow season especially in the month of July. The study concluded that in the case of non-availability of environmental information, hydrological indicators can be used to provide the basic assessment of environmental flow requirements. It is inferred from the results obtained from the study, that the new reservoir operations can fulfil human water needs without disturbing Environmental Flow Requirements.

A Study on the Minimum Flow Frequency Analysis by SMEMAX Transformation (SMEMAX변환에 의한 온수빈도분석에 관한 연구)

  • 이순혁;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.138-144
    • /
    • 1987
  • This study was conducted to pursue the normalization of frequency distribution by making approach the coefficient of skewness to nearly zero tbrough SMEMAX transformation and to get probable minimum flows can be acquired by means of transforrnation equation which has been derivated by SMEMAX method to the annual minimum flow series of five watersheds along Geum river basin. The results obtained through SMEMAX method were compared with probable minimum flows according to return periods by Type III extremal distribution which has been determined as the best fitted one among probablility distributions for the analysis of minimum flow. All the results obtained through this study are summarized as follows. 1.SMEMAX transformation based on median value was proved to be the best method when the coefficient of skewness has less reliability because of the short duration for the observation and were not affected by accidental outliers. 2.SMEMAX transformation has found to be the best one for the coefficient of skewness to be made nearly zero in comparison with log and cubic root transformation. 3.Probable minimum flows according to the return periods were derivated by transformation equations obtained through theoretical analysis of SMEM AX transformation. 4.In general, probable minimum flows by SMEMAX method were appeared as higher values in the range of five and twenty years and as lower ones in the range of below than five and more than fifty years in return periods respectively, in comparison with the results of type III extremal distribution. 5.Relative errors in the probable minimum flows of SMEMAX method to the results of type III extremal distribution were shown to be within ten percent except those of one hundred years in return periods. 6.SMEMAX method was also confirmed to be useful for the analysis of minimum flow frequency as well as flood frequency analysis.

  • PDF

Development of an Ejector System for Operation of Chemical Lasers (II) - Optimal Design of the Second-Throat Type Annular Supersonic Ejector - (화학레이저 구동용 이젝터 시스템 개발 (II) - 이차목 형태의 환형 초음속 이젝터 최적 설계 -)

  • Kim Sehoon;Jin Jungkun;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1231-1237
    • /
    • 2004
  • Determination of geometric design parameters of a second-throat type annual supersonic ejector is described. Tested geometric parameters were primary nozzle area ratio, cross-sectional area of second-throat, L/D ratio of second-throat and primary flow injection angle. Varying these four geometric parameters, we build a test matrix made of 81 test conditions, and experimental apparatus was fabricated to accommodate them. For each test condition, the stagnation pressure of primary flow and the static pressure of the secondary flow were measured simultaneously along with their transition to steady operation and finally to unstarting condition. Comparing the performance curve of every case focused on starting pressure, the unstarting pressure and the minimum secondary pressure, we could derive correlations that the parameters have on the performance of the ejector and presented the optimal design method of the ejector. Additional experiments were carried out to find effects of temperature and mass flow rate of the secondary flow.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

A Study on Improvement of Inflow/Infiltration Computation and Application Method in Sewer Rehabilitation Project (하수관거정비사업의 침입수/유입수 산정 및 활용방법 개선방안에 관한 연구)

  • Kim, Jong-Oh;Jeong, Dong-Gi;An, Dae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • In this study, current sewer infiltration/Inflow(I/I) computation and application method was examined about improvement and adequacy relating to the main issues raised by the field for practitioners. The results of review about infiltration calculation method were considered to be in need of improvement at 'standards of minimum sewage calculation'. Furthermore, the results of review about I/I application method were considered to be in need of improvement at 'standards of seasonal infiltration application' and 'the relative decrease in the Annual evaluation standards'. In addition, annual I/I analysis at JC County for the four years(2009~2012) in respect of operation flow and rainfall data was conducted. The result of annual infiltration analysis, compared average daily sewage generated average infiltration rate was found in 21.95 %, infiltration by unit was found in $0.31m^3/day/cm/km$ and $0.12m^3/day/day$, respectively. The result of annual inflow analysis, average rainfall - Inflow equations was found $y=5.499{\times}$($R^2$ 0.793), and the average Inflow quantity by sewer extension was predicted to $0.66m^3/mm-km$.

Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower (입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석)

  • Nguyen, Minh Phu;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • In order to provide effective operating conditions for the fan in a wet cooling tower with film fill, a new program to search for the minimum fan power was developed using a model of the optimal total annual cost of the tower based on Merkel's model. In addition, a type of design map for a cooling tower was also developed. The inlet water temperature and heat load were considered as key parameters. The present program was first validated using several typical examples. The results showed that for a given heat load, a three-dimensional graph of the fan power (z-axis), mass flux of air (x-axis, minimum fan power), and inlet water temperature (y-axis, maximum of minimum fan power) showed a saddle configuration. The minimum fan power increased as the heat load increased. The conventionally known fact that the most effective cooling tower operation coincides with a high inlet water temperature and low air flow rate can be replaced by the statement that there exists an optimum mass flux of air corresponding to a minimum fan power for a given inlet water temperature, regardless of the heat load.

Observations of the Cheju Current

  • Suk, Moon-Sik;Pang, Ig-Chan;Teague, William J.;Chang, Kyung-Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.3
    • /
    • pp.129-152
    • /
    • 2000
  • The Cheju Current (CC), defined here as a mean eastward flow in the Cheju Strait, mostly carries water of high temperature and salinity originating from the Kuroshio in winter and spring, the Cheju Warm Current Water (CWCW). The strong core of the eastward component of the CC is found close to Cheju Island (Cheju-Do, hereafter) in winter and spring with a peak speed of about 17.0 cm/s. The eastward flow weakens towards the northern Cheju Strait, and a weak westward flow occurs occasionally close to the southern coast of Korea. The volume transport ranges from 0.37 to 0.45 Sv(1 Sv=10$^6$ m$^3$/s) in winter and spring. Seasonal thermocline and harocline are formed in summer and eroded in November. The occurrence of the CWCW is confined in the southern Cheju Strait close to Cheju-Do below the seasonal thermocline in summer and fall, and cold water occupies the lower layer north of the CWCW which is thought to be brought into the area from the area west of Cheju-Do along with the CWCW. Stratification acts to increase both the speed of the CC with a peak speed of greater than 30 cm/s and the vertical shear of the along-strait currents. The strong core of the CC detached from the coast of Cheju-Do and shifted to the north during the stratified seasons. The volume transport in summer and fall ranges 0.510.66 Sv, which is about 1.5 times larger than that in winter and spring. An annual cycle of the cross-strait sea level difference shows its maximum in summer and fall and minimum in winter and spring, whose tendency is consistent with the annual variability of the CC and its transport estimated from the ADCP measurements. Moored current measurements west of Cheju-Do indicate the clockwise turning of the CC, and the moored current measurements in the Cheju Strait for 1530 days show the low-frequency variability of the along-strait flow with a period of about 37 days.

  • PDF