• Title/Summary/Keyword: annual maximum rainfall data

Search Result 106, Processing Time 0.023 seconds

A Studay on the Rainfall and Drought Days in Kyupgpook Area (경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析))

  • Suh, Seung Duk;Jeon, Kuk Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Comparison of Design Rainfalls From the Annual Maximum and the Non-annual Exceedance Series (연최대치계열과 비연초과치계열으로부터 산정한 확률강우량의 비교·분석)

  • Park, Yei Jun;Kwon, Hyun-Han;Chung, Eun Sung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.469-478
    • /
    • 2014
  • The annual maximum series (AMS) is usually used to estimate hydrological quantiles in practice because it is simple to construct and straightforward to probabilistic interpretation. However, it is limited to use the AMS in Korea due to the lack of reliable observed data which leads to the overestimation of design rainfall and/or flood. Using the 40-year observations of rainfall provided by the Korea Meteorological Administration, this study constructed the AMS and non-annual exceedance series (NAES) after identifying the independent storm event, analyzed the correlation between design rainfalls estimated from the AMS and NAES, and proposed a new method of point frequency analysis to estimate design rainfalls from the small number of observations.

A Study of the Urbanization Effect on the Precipitation Pattern in Urban Areas (도시화가 도시지역 강수변화에 미치는 영향 연구)

  • Oh, Tae-Suk;Ahn, Jae-Hyun;Moon, Young-Il;Kim, Jong-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.885-894
    • /
    • 2005
  • Since the 1970s, rapid Industrialization has brought urbanization nationwide. In this paper, thirty one years data(1973-2003) ate used to evaluate variability of major cities. Before assessing the context between urbanization and variability of rainfall, the rural areas are selected to compare with urban ones. Thus, average, trends, variations, and nonparametric frequency analysis methods were employed for evaluating variation of annual precipitation, seasonal precipitation, 1 hour annual maximum design rainfall and 24 hour annual maximum design rainfall for both urban and rural areas. The result have shown that summer precipitation relatively increased In urban areas compared to that in rural areas.

A Programming of Hydrologic Analysis Procedure for the Probable Isohyetal Chart in Korea (한국 확률강우량도 작성을 위한 수문해석방법 개발)

  • 이원환
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 1987
  • The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.

  • PDF

Application of Jackknife Method for Determination of Representative Probability Distribution of Annual Maximum Rainfall (연최대강우량의 대표확률분포형 결정을 위한 Jackknife기법의 적용)

  • Lee, Jae-Joon;Lee, Sang-Won;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.857-866
    • /
    • 2009
  • In this study, basic data is consisted annual maximum rainfall at 56 stations that has the rainfall records more than 30years in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the basic data. The method of moments, method of maximum likelihood and probability weighted moments method are used to estimate the parameters. And 4-tests (chi-square test, Kolmogorov-Smirnov test, Cramer von Mises test, probability plot correlation coefficient (PPCC) test) are used to determine the goodness of fit of probability distributions. This study emphasizes the necessity for considering the variability of the estimate of T-year event in hydrologic frequency analysis and proposes a framework for evaluating probability distribution models. The variability (or estimation error) of T-year event is used as a criterion for model evaluation as well as three goodness of fit criteria (SLSC, MLL, and AIC) in the framework. The Jackknife method plays a important role in estimating the variability. For the annual maxima of rainfall at 56 stations, the Gumble distribution is regarded as the best one among probability distribution models with two or three parameters.

Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change (기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용)

  • Kim, Youngkyu;Son, Minwoo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

A Study on the Regionalization of Point Rainfall by Statistical Methods (통계적 방법에 의한 지점강우의 권역화 연구)

  • Lee, Jung-Sik;Shin, Chang-Dong;Kim, Young-Wook
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.575-578
    • /
    • 2007
  • The objective of this study is to analyze the regionalization of point rainfall by statistical methods for regional frequency analysis of the rainfall. The rainfall data used in this study are annual maximum rainfall at 57 stations during the period of more than 30 years for 12 durations(10min, 1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24hr) in Korea. The Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance of nonparametric test the principal component and the cluster analysis have been performed to analyze the regionalization of rainfall. The results of this study are as follows; (1) The region which hydrological homogeneous is accepted does not exist for whole duration in Korea. (2) The result of nonpametric test shows that hydrological homogeneous regions of point rainfall are divided by 5 regions. (3) In case of cluster analysis hydrological homogeneous regions of point rainfall are divided by 6 regions and 4 other areas.

  • PDF

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

Suggestion of Probable Rainfall Intensity Formula Considering the Pattern Change of Maximum Rainfall at Incheon City (최대강우 패턴 변화를 고려한 인천지방 확률강우강도식의 제안)

  • Han Man-Shin;Choi Gye-Woon;Chung Yeun-Jung;Ahn Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.521-531
    • /
    • 2006
  • The formula was proposed through the examination of probability rainfall intensity formula used in Incheon based upon recent occurrences of heavy rain and extraordinary storms. Random-time maximum annual rainfalls were estimated for durations from ten minutes to twenty-four hours from the data by Korea Meteorological Administration. Eleven types of probability distribution are considered to estimate probable rainfall depths for different storm durations at Incheon city. Three goodness-of-fit tests including Chi-square, Kolmogorov-Smirmov and framer Von Misses were used to analyze the tendency of recent rainfall. Considering maximum rainfall occurred, General Extreme Value(GEV) distribution was chosen as the appropriate probability distribution. Five types of probability rainfall formulas including Talbot type, Sherman type, Japanese type, unified type I and unified type II are considered to determine the best type for rainfall intensity at Incheon. The formula was determined considering the time of concentration of sewer system and river at Incheon city. Unified type I was chosen for its accuracy and was proposed to represent rainfall intensity of Incheon district.