• Title/Summary/Keyword: annual

Search Result 11,177, Processing Time 0.037 seconds

A Study on the Variation of River Vegetation by Seasonal Precipitation Patterns (계절별 강수 패턴에 따른 하천 식생 변화 양상 연구)

  • Hee-Jeong JEONG;Seung-Yeon YU;Eun-Ji CHO;Yong-Joo JI;Yong-Suk KIM;Hyun-Kyung OH;Jong-Sung LEE;Hyun-Do JANG;Dong-Gil CHO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.1-19
    • /
    • 2023
  • In Korea, excessive vegetation in rivers made up of sand and gravel is emerging as a nationwide problem, which is attributed to increased spring precipitation and decreased annual precipitation. Therefore, this study was conducted for the purpose of identifying the effect of changes in precipitation patterns on river vegetation in Namcheon, Gyeongju, and analyzing the area of vegetation and ecological characteristics. As a result of the study, the amount of monthly precipitation in the summer of Namcheon decreased after 2007, and the area of vegetation increased continuously compared to the area of the sandbank. The proportion of naturalized plants increased steadily when precipitation continued to a level that did not cause flooding, but the area occupied by naturalized plants was small. Also, when the water level is maintained, the species diversity is low due to the dominance of a single species, and the dominant species was mainly native plants. Dominance of native plants inhibited the growth of naturalized plants, but the vegetation area increased even more. Therefore, it is necessary to manage the spread of vegetation itself rather than the division of native plants and naturalized plants in order to eliminate the active growth and prosperity of river vegetation. High water levels and continuous flooding caused by torrential rains in summer disturbed the plant communities, and vegetation formed afterwards was mainly native plants. Such flooding in river ecosystems is a positive factor for the emergence of native plants and over-formed vegetation communities, so it should be considered when establishing a vegetation management plan.

A Study on Control Possibility of Ambrosia trifida L., an Invasive Alien Plant by the Feeding of Ophraella communa LeSage (돼지풀잎벌레의 섭식에 의한 생태계교란 식물인 단풍잎돼지풀의 제어 가능성 연구)

  • SooIn Lee;JaeHoon Park;EuiJoo Kim;JiWon Park;JungMin Lee;YoonSeo Kim;SeHee Kim;YeoBin Park;EungPill Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.184-195
    • /
    • 2023
  • To develop an effective management plan for Ambrosia trifida L., an invasive alien plant in Korea, we assessed the potential of Ophraella communa LeSage as a biological control agent. This involved investigating the host specificity of the herbivore Ophraella communa LeSage, its annual travel distance, and the impact of this insect on the fitness of Ambrosia trifida L. We confirmed the host plant preference of Ophraella communa LeSage. The travel distance of this insect was determined by monitoring its appearance in selected Ambrosia trifida L. communities without these insects at distances of 10, 20, 30, and 100 meters, based on the locations where the presence of Ophraella communa LeSage was observed. The growth, reproductive, and physiological responses of Ambrosia trifida L. were measured according to feeding by Ophraella communa LeSage. As a result, Ophraella communa LeSage fed on only three taxa and moved short distances within a radius of 30 m per year from the host. The feeding behavior of the herbivore had a negative impact on the growth, reproductive, and physiological responses of Ambrosia trifida L. And the plant's growth and reproduction improved with increasing distance from the herbivore. Furthermore, the introduction of herbivores was able to control over 90% of Ambrosia trifida L. when the coverage of the Ambrosia trifida L. group was below 50%. However, the effectiveness of the removal decreased when the coverage exceeded 90%. These results are likely to be utilized by Ophraella communa LeSage as an ecological control agent. It is advantageous to introduce them in spring (May) when the coverage is low to maximize the effectiveness of control.

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Development and Testing of a RIVPACS-type Model to Assess the Ecosystem Health in Korean Streams: A Preliminary Study (저서성 대형무척추동물을 이용한 RIVPACS 유형의 하천생태계 건강성 평가법 국내 하천 적용성)

  • Da-Yeong Lee;Dae-Seong Lee;Joong-Hyuk Min;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • In stream ecosystem assessment, RIVPACS, which makes a simple but clear evaluation based on macroinvertebrate community, is widely used. In this study, a preliminary study was conducted to develop a RIVPACS-type model suitable for Korean streams nationwide. Reference streams were classified into two types(upstream and downstream), and a prediction model for macroinvertebrates was developed based on each family. A model for upstream was divided into 7 (train): 3 (test), and that for downstream was made using a leave-one-out method. Variables for the models were selected by non-metric multidimensional scaling, and seven variables were chosen, including elevation, slope, annual average temperature, stream width, forest ratio in land use, riffle ratio in hydrological characteristics, and boulder ratio in substrate composition. Stream order classified 3,224 sites as upstream and downstream, and community compositions of sites were predicted. The prediction was conducted for 30 macroinvertebrate families. Expected (E) and observed fauna (O) were compared using an ASPT biotic index, which is computed by dividing the BMWPK score into the number of families in a community. EQR values (i.e. O/E) for ASPT were used to assess stream condition. Lastly, we compared EQR to BMI, an index that is commonly used in the assessment. In the results, the average observed ASPT was 4.82 (±2.04 SD) and the expected one was 6.30 (±0.79 SD), and the expected ASPT was higher than the observed one. In the comparison between EQR and BMI index, EQR generally showed a higher value than the BMI index.

Trend Analysis of Barrier-free Academic Research using Text Mining and CONCOR (텍스트 마이닝과 CONCOR을 활용한 배리어 프리 학술연구 동향 분석)

  • Jeong-Ki Lee;Ki-Hyok Youn
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.19-31
    • /
    • 2023
  • The importance of barrier free is being highlighted worldwide. This study attempted to identify barrier-free research trends using text mining. Through this, it was intended to help with research and policies to create a barrier free environment. The analysis data is 227 papers published in domestic academic journals from 1996 when barrier free research began to 2022. The researcher converted the title, keywords, and abstract of an academic thesis into text, and then analyzed the pattern of the thesis and the meaning of the data. The summary of the research results is as follows. First, barrier-free research began to increase after 2009, with an annual average of 17.1 papers being published. This is related to the implementation guidelines for the barrier-free certification system that took effect on July 15, 2008. Second, results of barrier-free text mining i) As a result of word frequency analysis of top keywords, important keywords such as barrier free, disabled, design, universal design, access, elderly, certification, improvement, evaluation, and space, facility, and environment were searched. ii) As a result of TD-IDF analysis, the main keywords were universal design, design, certification, house, access, elderly, installation, disabled, park, evaluation, architecture, and space. iii) As a result of N-Ggam analysis, barrier free+certification, barrier free+design, barrier free+barrier free, elderly+disabled, disabled+elderly, disabled+convenience facilities, the disabled+the elderly, society+the elderly, convenience facilities+installation, certification+evaluation index, physical+environment, life+quality, etc. appeared in a related language. Third, as a result of the CONCOR analysis, cluster 1 was barrier-free issues and challenges, cluster 2 was universal design and space utilization, cluster 3 was Improving Accessibility for the Disabled, and cluster 4 was barrier free certification and evaluation. Based on the analysis results, this study presented policy implications for vitalizing barrier-free research and establishing a desirable barrier free environment.

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

Relationship Between Seasonal Dynamics of Zooplankton Community and Diversity in Small Reservoir Focusing on Occurrence Pattern (출현 양상 기반 소형호 내 동물플랑크톤 군집의 계절 변동과 다양성 관계)

  • Geun-Hyeok Hong;Hye-ji Oh;Yerim Choi;Jun-Wan Kim;Beom-Myeong Choi;KwangHyeon Chang;Min-Ho Jang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.172-186
    • /
    • 2023
  • Small ponds, which exhibit unstable succession pattern of plankton community, are less well studied than large lakes. Recently, the importance of small ponds for local biodiversity conservation has highlighted the necessity of understanding the dynamics of biological community. In the present study, we collected zooplankton from three small reservoirs with monthly basis and analyzed their seasonal dynamics. To understand the complicated zooplankton community dynamics of small reservoirs, we categorized zooplankton species into four groups (LALF Group, Low Abundance Low Frequency; LAHF Group, Low Abundance High Frequency; HALF Group, High Abundance Low Frequency; HAHF Group, High Abundance High Frequency) based on their occurrence pattern (abundance and frequency). We compared the seasonal pattern of each group, and estimated community diversity based on temporal beta diversity contribution of each group. The result revealed that there is a relationship between groups with the same abundance but different occurrence frequencies, and copepod nauplii are common important component for both abundance and frequency. On the other hand, species included with LALF Group throughout the study period are key in terms of monthly succession and diversity. LALF Group includes Anuraeopsis fissa, Hexarthra mira and Lecane luna. However, groups containing species that only occur at certain times of the year and dominate the waterbody, HALF Group, hindered to temporal diversity. The results of this study suggest that the species-specific occurrence pattern is one key trait of species determining its contribution to total annual biodiversity of given community.

Mapping CO2 Emissions Using SNPP/VIIRS Nighttime Light andVegetation Index in the Korean Peninsula (SNPP/VIIRS 야간조도와 식생지수를 활용한 한반도 CO2 배출량 매핑)

  • Sungwoo Park;Daeseong Jung;Jongho Woo;Suyoung Sim;Nayeon Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.247-253
    • /
    • 2023
  • As climate change problem has recently become serious, studies are being conducted to identify carbon dioxide (CO2) emission dynamics based on satellite data to reduce emissions. It is also very important to analyze spatial patterns by estimating and mapping CO2 emissions dynamic. Therefore, in this study, CO2 emissions in the Korean Peninsula from 2013 to 2020 were estimated and mapped. To spatially estimate and map emissions, we use the enhanced vegetation index adjusted nighttime light index, an index that combines nighttime light (NTL) and vegetation index, to map both areas where NTL is observed and areas where NTL is not observed. In order to spatially estimate and map CO2 emissions, the total annual emissions of the Korean Peninsula were calculated, resulting in an increase of 11% from 2013 to 2017 and a decrease of 13% from 2017 to 2020. As a result of the mapping, it was confirmed that the spatial pattern of CO2 emissions in the Korean Peninsula were concentrated in urban areas. After being divided into 17 regions, which included the downtown area, the metropolitan area accounted for roughly 40% of CO2 emissions in the Korean Peninsula. The region that exhibited the most significant change from 2013 to 2020 was Sejong City, showing a 96% increase.

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.