Journal of the Institute of Convergence Signal Processing
/
v.22
no.4
/
pp.149-155
/
2021
In this study, we intend to develop a defective road surface object recognition model that automatically detects road surface defects that restrict the movement of the transportation handicapped using electric mobile devices with deep learning. For this purpose, road surface information was collected from the pedestrian and running routes where the electric mobility aid device is expected to move in five areas within the city of Busan. For data, images were collected by dividing the road surface and surroundings into objects constituting the surroundings. A series of recognition items such as the detection of breakage levels of sidewalk blocks were defined by classifying according to the degree of impeding the movement of the transportation handicapped in traffic from the collected data. A road surface object recognition deep learning model was implemented. In the final stage of the study, the performance verification process of a deep learning model that automatically detects defective road surface objects through model learning and validation after processing, refining, and annotation of image data separated and collected in units of objects through actual driving. proceeded.
Objective: The study of Hanwoo (Korean native cattle) has mainly been focused on meat quality and productivity. Recently the field of microbiome research has increased dramatically. However, the information on the microbiome in Hanwoo is still insufficient, especially relationship between vagina and feces. Therefore, the purpose of this study is to examine the microbial community characteristics by analyzing the 16S rRNA sequencing data of Hanwoo vagina and feces, as well as to confirm the difference and correlation between vaginal and fecal microorganisms. As a result, the goal is to investigate if fecal microbiome can be used to predict vaginal microbiome. Methods: A total of 31 clinically healthy Hanwoo that delivered healthy calves more than once in Cheongju, South Korea were enrolled in this study. During the breeding season, we collected vaginal and fecal samples and sequenced the microbial 16S rRNA genes V3-V4 hypervariable regions from microbial DNA of samples. Results: The results revealed that the phylum-level microorganisms with the largest relative distribution were Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria in the vagina, and Firmicutes, Bacteroidetes, and Spirochaetes in the feces, respectively. In the analysis of alpha, beta diversity, and effect size measurements (LefSe), the results showed significant differences between the vaginal and fecal samples. We also identified the function of these differentially abundant microorganisms by functional annotation analyses. But there is no significant correlation between vaginal and fecal microbiome. Conclusion: There is a significant difference between vaginal and fecal microbiome, but no significant correlation. Therefore, it is difficult to interrelate vaginal microbiome as fecal microbiome in Hanwoo. In a further study, it will be necessary to identify the genetic relationship of the entire microorganism between vagina and feces through the whole metagenome sequencing analysis and meta-transcriptome analysis to figure out their relationship.
KIPS Transactions on Software and Data Engineering
/
v.12
no.4
/
pp.159-172
/
2023
In general, social problem-solving research aims to create important social value by offering meaningful answers to various social pending issues using scientific technologies. Not surprisingly, however, although numerous and extensive research attempts have been made to alleviate the social problems and issues in nation-wide, we still have many important social challenges and works to be done. In order to facilitate the entire process of the social problem-solving research and maximize its efficacy, it is vital to clearly identify and grasp the important and pressing problems to be focused upon. It is understandable for the problem discovery step to be drastically improved if current social issues can be automatically identified from existing R&D resources such as technical reports and articles. This paper introduces a comprehensive dataset which is essential to build a machine learning model for automatically detecting the social problems and solutions in various national research reports. Initially, we collected a total of 700 research reports regarding social problems and issues. Through intensive annotation process, we built totally 24,022 sentences each of which possesses its own category or label closely related to social problem-solving such as problems, purposes, solutions, effects and so on. Furthermore, we implemented four sentence classification models based on various neural language models and conducted a series of performance experiments using our dataset. As a result of the experiment, the model fine-tuned to the KLUE-BERT pre-trained language model showed the best performance with an accuracy of 75.853% and an F1 score of 63.503%.
Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
Korean Journal of Remote Sensing
/
v.39
no.6_3
/
pp.1679-1692
/
2023
South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1321-1330
/
2023
This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.6
/
pp.114-123
/
2023
With the development of computer vision technology, video sensors such as CCTV are detecting incident. However, most of the current incident have been detected based on existing fixed imaging equipment. Accordingly, there has been a limit to the detection of incident in shaded areas where the image range of fixed equipment is not reached. With the recent development of edge-computing technology, real-time analysis of mobile image information has become possible. The purpose of this study is to evaluate the possibility of detecting expressway emergencies by introducing computer vision technology to dash cam. To this end, annotation data was constructed based on 4,388 dash cam still frame data collected by the Korea Expressway Corporation and analyzed using the YOLO algorithm. As a result of the analysis, the prediction accuracy of all objects was over 70%, and the precision of traffic accidents was about 85%. In addition, in the case of mAP(mean Average Precision), it was 0.769, and when looking at AP(Average Precision) for each object, traffic accidents were the highest at 0.904, and debris were the lowest at 0.629.
Jaeim Lee;Jong-Hwan Kim;Hoang Bao Khanh Chu;Seong-Taek Oh;Sung-Bum Kang;Sejoon Lee;Duck-Woo Kim;Heung-Kwon Oh;Ji-Hwan Park;Jisu Kim;Jisun Kang;Jin-Young Lee;Sheehyun Cho;Hyeran Shim;Hong Seok Lee;Seon-Young Kim;Young-Joon Kim;Jin Ok Yang;Kil-yong Lee
Molecules and Cells
/
v.47
no.3
/
pp.100033.1-100033.13
/
2024
Considering the recent increase in the number of colorectal cancer (CRC) cases in South Korea, we aimed to clarify the molecular characteristics of CRC unique to the Korean population. To gain insights into the complexities of CRC and promote the exchange of critical data, RNA-sequencing analysis was performed to reveal the molecular mechanisms that drive the development and progression of CRC; this analysis is critical for developing effective treatment strategies. We performed RNA-sequencing analysis of CRC and adjacent normal tissue samples from 214 Korean participants (comprising a total of 381 including 169 normal and 212 tumor samples) to investigate differential gene expression between the groups. We identified 19,575 genes expressed in CRC and normal tissues, with 3,830 differentially expressed genes (DEGs) between the groups. Functional annotation analysis revealed that the upregulated DEGs were significantly enriched in pathways related to the cell cycle, DNA replication, and IL-17, whereas the downregulated DEGs were enriched in metabolic pathways. We also analyzed the relationship between clinical information and subtypes using the Consensus Molecular Subtype (CMS) classification. Furthermore, we compared groups clustered within our dataset to CMS groups and performed additional analysis of the methylation data between DEGs and CMS groups to provide comprehensive biological insights from various perspectives. Our study provides valuable insights into the molecular mechanisms underlying CRC in Korean patients and serves as a platform for identifying potential target genes for this disease. The raw data and processed results have been deposited in a public repository for further analysis and exploration.
Cannabis sativa is a plant widely cultivated worldwide and has been used as a material for food, medicine, building materials and cosmetics. In this study, we assessed the functional effects of C. sativa stem and root extracts using network pharmacology and confirmed their novel functions. The components in stem and root ethanol extracts were identified by gas chromatography-mass spectrometry analysis, and networks between the components and proteins were constructed using the STICHI database. Functional annotation of the proteins was performed using the KEGG pathway. The effects of the extracts were confirmed in lysophosphatidylcholine-induced THP-1 cells using real-time PCR. A total of 21 and 32 components were identified in stem and root extracts, respectively, and 147 and 184 proteins were linked to stem and root components, respectively. KEGG pathway analysis showed that 69 pathways, including the MAPK signaling pathway, were commonly affected by the extracts. Further investigation using pathway networks revealed that terpenoid backbone biosynthesis was likely affected by the extracts, and the expression of the MVK and MVD genes, key proteins in terpenoid backbone biosynthesis, was decreased in LPC-induced THP-1 cells. Therefore, this study determined the diverse function of C. sativa extracts, providing information for predicting and researching the effects of C. sativa.
Brassica rape is an important species used as a vegetable, oil, and fodder worldwide. It is related phylogenically to Arabidopsis thaliana, which has already been fully sequenced as a model plant. The 'Multinational Brassica Genome Project (MBGP)'was launched by the international Brassica community with the aim of sequencing the whole genome of B. rapa in 2003 on account of its value and the fact that it has the smallest genome among the diploid Brassica. The genome study was carried out not only to know the structure of genome but also to understand the function and the evolution of the genes comprehensively. There are two mapping populations, over 1,000 molecular markers and a genetic map, 2 BAC libraries, physical map, a 22 cDHA libraries as suitable genomic materials for examining the genome of B. rapa ssp. pekinensis Chinese cabbage. As the first step for whole genome analysis, 220,000 BAC-end sequences of the KBrH and KBrB BAC library are achieved by cooperation of six countries. The results of BAC-end sequence analysis will provide a clue in understanding the structure of the genome of Brassica rapa by analyzing the gene sequence, annotation and abundant repetitive DHA. The second stage involves sequencing of the genetically mapped seed BACs and identifying the overlapping BACs for complete genome sequencing. Currently, the second stage is comprises of process genetic anchoring using communal populations and maps to identify more than 1,000 seed BACs based on a BAC-to-BAC strategy. For the initial sequencing, 629 seed BACs corresponding to the minimum tiling path onto Arabidopsis genome were selected and fully sequenced. These BACs are now anchoring to the genetic map using the development of SSR markers. This information will be useful for identifying near BAC clones with the seed BAC on a genome map. From the BAC sequences, it is revealed that the Brassica rapa genome has extensive triplication of the DNA segment coupled with variable gene losses and rearrangements within the segments. This article introduces the current status and prospective of Korea Brassica Genome Project and the bioinformatics tools possessed in each national team. In the near future, data of the genome will contribute to improving Brassicas for their economic use as well as in understanding the evolutional process.
Sang, Min Kyu;Kang, Se Won;Hwang, Hee-Ju;Chung, Jong Min;Song, Dae Kwon;Min, Hye Rin;Park, Jie Eun;Ha, Hee Cheol;Lee, Hyun Jun;Hong, Chan Eui;Ahn, Young Mo;Park, So Young;Park, Young-Su;Park, Hong Seog;Han, Yeon Soo;Lee, Jun Sang;Lee, Yong Seok
The Korean Journal of Malacology
/
v.32
no.4
/
pp.263-268
/
2016
Metallothionein (MT) family of metal-binding proteins are involved in maintaining homeostasis and heavy metal poisoning. Recently, MT has been considered as a biomarker that can identify a particular species, very similar to the use of cytochrome oxidase I (COI) gene. Satsuma myomphala species of land snails have been reported from North-East Asia, including South Korea and Japan. In particular, the land snail species have been known from only a limited area of Geoje Island, Gyeongsangnam-do province of South Korea. Genetic studies of S. myomphala has been limited with only 6 nucleotide, 2 protein registered on the NCBI server. For elucidating the genetic information of S. myomphala, we conducted RNA sequencing analysis using Illumina HiSeq 2500 next-generation platform. We screened the MT gene from the RNA-Seq database to confirm the molecular phylogenetic relationship. After sequencing, the de novo analysis and clustering generated 103,774 unigenes. After annotation against PANM database using BLAST program, we obtained MT sequence of 74 amino acid residues containing the coding region of 222 bp. Based on this sequence, we found about 53 sequences using the BLAST program in NCBI nr database. Using ClustalX alignment, Maximum-Likehood Tree of MEGA program, we confirmed the molecular phylogenetic relationships that showed similarity with mollusks such as Helix pomatia and H. aspersa, Megathura crenulata.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.