• 제목/요약/키워드: ankyrin repeat

검색결과 23건 처리시간 0.026초

The innate immune response transcription factor Bombyx mori Relish1 induces high-level antimicrobial peptides in silkworm

  • Kim, Seong-Wan;Kim, Seong-Ryul;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권2호
    • /
    • pp.49-54
    • /
    • 2018
  • To artificially enhance antimicrobial peptide expression in Bombyx mori, we constructed genetically engineered silkworms overexpressing Rel family transcription factor. The truncated BmRelish1 (BmRelish1t) gene contained a Rel homolog domain (RHD), nuclear localization signal (NLS), acidic and hydrophobic amino acid (AHAA)-rich region, and death domain (DD), but no ankyrin-repeat (ANK) domain. The BmRelish1t gene was controlled by B. mori cytoplasmic actin 3 promoter in the PiggyBac transposon vector. Chromosome analysis of G1 generations of a transgenic silkworm with EGFP expression confirmed stable insertion of BmRelish1t. BmRelish1t gene overexpression in transgenic silkworms resulted in higher mRNA expression levels of B. mori antimicrobial peptides such as lebocin(~20.5-fold), moricin(~8.7-fold), and nuecin(~17.4-fold) than those in normal silkworms.

Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection

  • Zhong, Conghao;Liu, Zemin;Qiao, Xibo;Kang, Li;Sun, Yi;Jiang, Yunliang
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1290-1302
    • /
    • 2021
  • Objective: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

Regulation of ANKRD9 expression by lipid metabolic perturbations

  • Wang, Xiaofei;Newkirk, Robert F.;Carre, Wilfrid;Ghose, Purnima;Igobudia, Barry;Townsel, James G.;Cogburn, Larry A.
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.568-573
    • /
    • 2009
  • Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone ($T_3$) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation.

Expression of Murine Asb-9 During Mouse Spermatogenesis

  • Lee, Man Ryul;Kim, Soo Kyoung;Kim, Jong Soo;Rhim, Si Youn;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • 제26권6호
    • /
    • pp.621-624
    • /
    • 2008
  • We previously showed that Asb-4 and Asb-17 is uniquely expressed in developing male germ cells. A recent report showed that Asb-9 is specifically expressed in the kidney and testes; however, detailed expression patterns in developing germ cells have not been shown. Northern blot analysis in various tissues demonstrated that mAsb-9 was strongly expressed in the testes. Expression analysis by RT-PCR and Northern blot in developing mouse testes indicates that mAsb-9 is expressed from the fourth week after birth to adulthood, with the highest expression in round spermatids. Expression sites were further localized by in situ hybridization in the testes. Pachytene spermatocytes and spermatids expressed mAsb-9 but spermatogonia and generated spermatozoa did not. This study reveals that mAsb-9 could be a specific marker of active spermatogenesis and would be useful for studies of male germ cell development.

ANKS1A-Deficiency Aberrantly Increases the Entry of the Protein Transport Machinery into the Ependymal Cilia

  • Haeryung Lee;Jiyeon Lee;Miram Shin;Soochul Park
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.757-763
    • /
    • 2023
  • In this study, we examine whether a change in the protein levels for FOP in Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A)-deficient ependymal cells affects the intraflagellar transport (IFT) protein transport system in the multicilia. Three distinct abnormalities are observed in the multicilia of ANKS1A-deficient ependymal cells. First, there were a greater number of IFT88-positive trains along the cilia from ANKS1A deficiency. The results are similar to each isolated cilium as well. Second, each isolated cilium contains a significant increase in the number of extracellular vesicles (ECVs) due to the lack of ANKS1A. Third, Van Gogh-like 2 (Vangl2), a ciliary membrane protein, is abundantly detected along the cilia and in the ECVs attached to them for ANKS1A-deficient cells. We also use primary ependymal culture systems to obtain the ECVs released from the multicilia. Consequently, we find that ECVs from ANKS1A-deficient cells contain more IFT machinery and Vangl2. These results indicate that ANKS1A deficiency increases the entry of the protein transport machinery into the multicilia and as a result of these abnormal protein transports, excessive ECVs form along the cilia. We conclude that ependymal cells make use of the ECV-based disposal system in order to eliminate excessively transported proteins from basal bodies.

프루텔고치벌 브라코바이러스(Cotesia plutellae Bracovirus) 유래 $I_{k}B$ 유전자 구조와 피기생 배추좀나방(Plutella xylostella) 체내 발현 패턴 (Gene Structure of Cotesia plutellae Bracovirus (CpBV)-$I_{k}B$ and Its Expression Pattern in the Parasitized Diamondback Moth, Plutella xylostella)

  • 김용균;;;배성우
    • 한국응용곤충학회지
    • /
    • 제45권1호
    • /
    • pp.15-24
    • /
    • 2006
  • 프루텔고치벌(Cotesia plutellae)은 내부기생봉이고 kB억제자 (IkB)와 유사한 유전자가 이 기생봉의 절대 공생바이러스(C. plutellae bracovirus: CpBV) 게놈에서 발견되었다. 이 유전자의 발현 부위는 417 br의 크기이며 138개 아미노산 서열 정보를 포함하였다. 이 단백질은 4개의 ankyrin 반복영역을 지니고 있었으며, 알려진 다른 폴리드나바이러스 유래 IkB 유전자와 높은 상동성을 보였다. 초파리 Cactus 단백질을 통해 대상 기주 IkB와 비교하여 보면, IkB 신호수신영역이 부재하는 구조를 보여, CpBV-IkB는 NFkB 신호전달체계의 비가역적 억제 인자로 작용할 것으로 추정되었다. CpBV-IkB는 프루텔고치 벌에 기생된 배추좀나방에서만 발현되었다. 정량적 RT-PCR 방법으로 CpBV-IkB의 발현량을 조사하여 보면, 기생 첫날부터 발현을 보이기 시작하여 뚜렷한 발현량을 기생 전체 기간동안 유지하는 양상을 보였다. 이 CpBV-IkB의 기능 분석이 간접적으로 이뤄졌으며, 이 유전자 발현물이 대상 기주 항바이러스 억제 인자로 작용할 것이라는 가설을 제시하였다.

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

Proteomic Comparison between Japanese Black and Holstein Cattle by Two-dimensional Gel Electrophoresis and Identification of Proteins

  • Ohsaki, H.;Okada, M.;Sasazaki, S.;Hinenoya, T.;Sawa, T.;Iwanaga, S.;Tsuruta, H.;Mukai, F.;Mannen, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.638-644
    • /
    • 2007
  • Differences of meat qualities between Japanese Black and Holstein have been known in Japan, however, the causative proteins and/or the genetic background have been unclear. The aim of this study was to identify candidate proteins causing differences of the meat qualities between the two breeds. Using technique of two-dimensional gel electrophoresis, protein profiling was compared from samples of the longissimus dorsi muscle and subcutaneous adipose tissue. Five protein spots were observed with different expression levels between breeds. By using LC-MS/MS analysis and Mascot program, three of them were identified as ankyrin repeat protein 2, phosphoylated myosin light chain 2 and mimecan protein. Subsequently, we compared the DNA coding sequences of three proteins between breeds to find any nucleotide substitution. However, there was no notable mutation which could affect pI or molecular mass of the proteins. The identified proteins may be responsible for different characteristics of the meat qualities between Japanese Black and Holstein cattle.

Proteomics Comparison of Longissimus Muscle between Hanwoo and Holstein Cattle

  • Shim, Kwan-Seob;Park, Garng-Hee;Hwang, In-Ho;Yoon, Chang;Na, Chong-Sam;Jung, Hyun-Jung;Choe, Ho-Sung
    • 한국축산식품학회지
    • /
    • 제30권3호
    • /
    • pp.385-391
    • /
    • 2010
  • This study was conducted to compare proteins expressed in M. longissimus from Hanwoo and Holstein steers immediately after slaughter. Two-dimensional electrophoresis (2DE)/LC-MS/MS analysis revealed that the total number of detectable protein spots from longissimus muscle tissues was slightly higher in Hanwoo ($575{\pm}65$) than Holstein ($534{\pm}13$) steers, but that these numbers were not statistically significant due to large variation between replicates. A total of twelve protein spots did not match between sample groups, eight of which were expressed in the Hanwoo sample and four that were expressed in the Holstein sample. The protein spots detected in the Hanwoo sample included smooth muscle and non-muscle myosin alkali light chain 6B isomers, ${\alpha}B$ crystallin isomers, hemoglobin ${\beta}$-A chains, slow myosin heavy chains, and slow skeletal muscle troponin T chains. Collectively, these proteins are a class of slow-twitch muscle fiber and mirror that Hanwoo muscle tissue sampled for the current study contained more slow-twitch muscle fibers than Holstein one. Conversely, proteins detected from the Holstein sample included ankyrin repeat domain 2 and creatin kinase isomers. Given that creatin kinase isomers are related to the fast-twitch muscle, these results likely indicate that Holstein muscle tissue sampled for the current study contained more fast-twitch muscle fibers than Hanwoo beef.

An ANKRD11 exonic deletion accompanied by a congenital megacolon in an infant with KBG syndrome

  • Seo, Go Hun;Oh, Arum;Kang, Minji;Kim, Eun Na;Jang, Ja-Hyun;Kim, Dae Yeon;Kim, Kyung Mo;Yoo, Han-Wook;Lee, Beom Hee
    • Journal of Genetic Medicine
    • /
    • 제16권1호
    • /
    • pp.39-42
    • /
    • 2019
  • KBG syndrome is an autosomal dominant syndrome presenting with macrodontia, distinctive facial features, skeletal anomalies, and neurological problems caused by mutations in the ankyrin repeat domain 11 (ANKRD11) gene. The diagnosis of KBG is difficult in very young infants as the characteristic macrodontia and typical facial features are not obvious. The youngest patient diagnosed to date was almost one year of age. We here describe a 2-month-old Korean boy with distinctive craniofacial features but without any evidence of macrodontia due to his very early age. He also had a congenital megacolon without ganglion cells in the rectum. A de novo deletion of exons 5-9 of the ANKRD11 gene was identified in this patient by exome sequencing and real-time genomic polymerase chain reaction. As ANKRD11 is involved in the development of myenteric plexus, a bowel movement disorder including a congenital megacolon is not surprising in a patient with KBG syndrome and has possibly been overlooked in past cases.