• Title/Summary/Keyword: anisotropic material

Search Result 454, Processing Time 0.021 seconds

Anisotropic Etching Technology of Highly Doped Polysilicon by Mixed Chloroform (클로로포름($CHCl_3$)을 첨가한 고농도 폴리실리콘 이방성 식각 기술)

  • Lee, Jung-Hwan;Seo, Hee-Don;Choi, Se-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.101-105
    • /
    • 1998
  • This paper describes anisotropic etching technology of highly doped polysilicon. The main etching gases are $Cl_2$ and $SiCl_4$ for reactive ion etching of polysilicon. The mixed $CHCl_3$ to main etching gas makes polymer on etching side wall, so it prevents side etching of polysilicon. The etch rate of polysilicon is increased with increasing RF power. But the etching rate is decreased as the flow rate of $CHCl_3$ is increased with fixed RF power. The etch selectivity of polysilicon and $SiO_2$ is about 12:1. And that of polysilicon and $Si_3N_4$ is about 19:1. In the main etching gas condition, the slope of polysilicon is same as that of photoresist. But in the mixed $CHCl_3$ condition, the slope of polysilicon is larger than that of photoresist. This represents that the polymer made on side wall by added $CHCl_3$ prevents side etching, so anisotropic etching can be possible by polymer.

  • PDF

Multi-pole anisotropic Sr-ferrite sintered magnets fabricated by powder injection molding (분말사출성형으로 제조된 다극 이방성 Sr-페라이트 소결자석)

  • Cho, Tae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.284-287
    • /
    • 2001
  • Multi-pole anisotropic Sr-ferrite sintered magnets has been studied by powder injection molding under applied magnetic field. The orientation of anisotropic Sr-ferrite powders higher than 80% during injection molding is achieved at the following conditions; apparent viscosity lower then 2500 poise in 1000 $sec^{-1}$ shear rate and applied magnetic field higher then 4 kOe. For the high fluidity and strength of injection molded compact, and the effective binder removal without defects during solvent extraction and thermal debinding, the optimum multi-binder composition is paraffin wax(PW)/carnauba wax(CW)/HDPE = 50/25/25 wt%. The rate of binder removal is proportional to the mean particle size of Sr-ferrite powders whereas it is inversely proportional to the content of Sr-ferrite powders and the sample thickness. The high magnetic properties of Sr-ferrite sintered magnets are; 3.8 kG of remanent flux density, 3.4 kOe of intrinsic coercivity, and 1.2 kG of surface flux density (l-mm-thick) in the direction of applied magnetic field.

  • PDF

Mu7i-pole anisotropic Sr-ferrite sintered magnets fabricated by powder injection molding (분말사출성형으로 제조된 다극 이방성 SF-폐라이트 소결자석)

  • 조태식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.284-287
    • /
    • 2001
  • Multi-pole anisotropic Sr-fertile sintered magnets has been studied by powder injection molding under applied magnetic field. The orientation of anisotropic Sr-ferrite powders higher than 80% during injection molding is achieved at the following conditions; apparent viscosity lower then 2500 poise in 1000 sec$\^$-1/ shear rate and applied magnetic field higher then 4 kOe. For the high fluidity and strength of injection molded compact, and the effective binder removal without defects during solvent extraction and thermal debinding, the optimum multi-binder composition is paraffin wax(PW)/carnauba wax(CW)/HDPE = 50/25/25 wt%. The rate of binder removal is proportional to the mean particle size of Sr-ferrite powders whereas it is inversely proportional to the content of Sr-ferrite powders and the sample thickness. The high magnetic properties of Sr-ferrite sintered magnets are; 3.8 kG of remanent flux density, 3.4 kOe of intrinsic coercivity, and 1.2 kG of surface flux density (1-mm-thick) in the direction of applied magnetic field.

  • PDF

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

Advances in Ultrasonic Testing of Austenitic Stainless Steel Welds

  • Moysan, J.;Ploix, M.A.;Corneloup, G.;Guy, P.;Guerjouma, R. El;Chassignole, B.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2008
  • A precise description of the material is a key point to obtain reliable results when using wave propagation codes. In the case of multipass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Two main advances are presented in the following. The first advance is a model which describes the anisotropy resulting from the metal solidification and thus the model reproduces an anisotropy that is correlated with the grain orientation. The model is called MINA for modelling anisotropy from Notebook of Arc welding. With this kind of material model1ing a good description of the behaviour of the wave propagation is obtained, such as beam deviation or even beam division. But another advance is also necessary to have a good amplitude prediction: a good quantification of the attenuation, particularly due to grain scattering, is also required as far as attenuation exhibits a strong anisotropic behaviour too. Measurement of attenuation is difficult to achieve in anisotropic materials. An experimental approach has been based both on the decomposition of experimental beams into plane waves angular spectra and on the propagation modelling through the anisotropic material via transmission coefficients computed in generally triclinic case. Various examples of results are showed and also some prospects to continue refining numerical simulation of wave propagation.

Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치 해석)

  • Ahn, Young-Cheol;Chun, Kap-Jae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. The $12{\times}12$ irregular mesh that was chosen as the optimum in the previous analysis was used for computational accuracy and efficiency. A material having the physical properties of alumina/titanium carbide composite was selected and an electricity with power of 51.4 V and current of 7 A was applied, assuming the removal efficiency of 10 % and the thermal anisotropic factors of 2 and 3. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately, the temperature distribution and the shape of the crater were shifted in the radial and axial directions, respectively. The material removal rate was found to be higher when the conductivity was increased in the radial direction rather than in the axial direction.

Free vibrations of anisotropic rectangular plates with holes and attached masses

  • Rossit, C.A.;Ciancio, P.M.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2008
  • Anisotropic materials are increasingly required in modern technological applications. Certainly, civil, mechanical and naval engineers frequently deal with the situation of analyzing the dynamical behaviour of structural elements being composed of such materials. For example, panels of anisotropic materials must sometimes support electromechanical engines, and besides, holes are performed in them for operational reasons e.g., conduits, ducts or electrical connections. This study is concerned with the natural frequencies and normal modes of vibration of rectangular anisotropic plates supported by different combinations of the classical boundary conditions: clamped, simply - supported and free, and with additional complexities such holes of free boundaries and attached concentrated masses. A variational approach (the well known Ritz method) is used, where the displacement amplitude is approximated by a set of beam functions in each coordinate direction corresponding to the sides of the rectangular plate. Consequently each coordinate function satisfies the essential boundary conditions at the outer edge of the plate. The influence of the position and magnitude of both hole and mass, on the natural frequencies and modal shapes of vibration are studied for a generic anisotropic material. The classical Ritz method with beam functions as spatial approximation proved to be a suitable procedure to solve a problem of such analytical complexity.

Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).

Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.199-218
    • /
    • 2019
  • This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic (orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding boundary value problem it is employed time-harmonic presentation of the sought values with respect to time and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate length. Numerical results on the pressure acting on the interface plane between the plate and fluid are presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the interface pressure. The numerical results are presented not only for the viscous fluid case but also for the inviscid fluid case.

A Study on Bending Vibration of Laminated Rotating Disc (복합재료 회전체의 휨진동에 관한 연구)

  • Park, Sung-Jin;LEE, Seung-Hyeon
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • In this study, the vibration characteristics were theoretically analyzed by modeling a free isotropic rotating disk with an outer periphery with a fixed inner periphery, paying attention to disks used as storage devices for information devices, especially magnetic disks, magneto-optical disks, and compact disks in which the head and disk are non-contact. Iluminate with Composite materials represented by fiber-reinforced plastics (FRP) have high specific strength (strength/density) and specific stiffness (narrowness/density). It is used in the elements, and its use is rapidly expanding. Under this circumstance, the disk currently manufactured using an isotropic material made of various plastic materials such as aluminum or polycarbonate as a base material is an extremely anisotropic material made of a composite material, and the circumferential stiffness of the disk is made of reinforcing fibers in the circumferential direction. It is modeled as an anisotropic rotating disk with increased, and its influence on the vibration characteristics is revealed.