• Title/Summary/Keyword: anisotropic Lebesgue spaces

Search Result 2, Processing Time 0.018 seconds

Existence Results for an Nonlinear Variable Exponents Anisotropic Elliptic Problems

  • Mokhtar Naceri
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.271-286
    • /
    • 2024
  • In this paper, we prove the existence of distributional solutions in the anisotropic Sobolev space $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ with variable exponents and zero boundary, for a class of variable exponents anisotropic nonlinear elliptic equations having a compound nonlinearity $G(x, u)=\sum_{i=1}^{N}(\left|f\right|+\left|u\right|)^{p_i(x)-1}$ on the right-hand side, such that f is in the variable exponents anisotropic Lebesgue space $L^{\vec{p}({\cdot})}(\Omega)$, where $\vec{p}({\cdot})=(p_1({\cdot}),{\ldots},p_N({\cdot})){\in}(C(\bar{\Omega},]1,+{\infty}[))^N$.

THE 3D BOUSSINESQ EQUATIONS WITH REGULARITY IN THE HORIZONTAL COMPONENT OF THE VELOCITY

  • Liu, Qiao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.649-660
    • /
    • 2020
  • This paper proves a new regularity criterion for solutions to the Cauchy problem of the 3D Boussinesq equations via one directional derivative of the horizontal component of the velocity field (i.e., (∂iu1; ∂ju2; 0) where i, j ∈ {1, 2, 3}) in the framework of the anisotropic Lebesgue spaces. More precisely, for 0 < T < ∞, if $$\large{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_o}^T}({\HUGE\left\|{\small{\parallel}{\partial}_iu_1(t){\parallel}_{L^{\alpha}_{x_i}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}+}{\HUGE\left\|{\small{\parallel}{\partial}_iu_2(t){\parallel}_{L^{\alpha}_{x_j}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}})dt<{{\infty}},$$ where ${\frac{2}{{\gamma}}}+{\frac{1}{{\alpha}}}+{\frac{2}{{\beta}}}=m{\in}[1,{\frac{3}{2}})$ and ${\frac{3}{m}}{\leq}{\alpha}{\leq}{\beta}<{\frac{1}{m-1}}$, then the corresponding solution (u, θ) to the 3D Boussinesq equations is regular on [0, T]. Here, (i, ${\hat{i}}$, ${\tilde{i}}$) and (j, ${\hat{j}}$, ${\tilde{j}}$) belong to the permutation group on the set 𝕊3 := {1, 2, 3}. This result reveals that the horizontal component of the velocity field plays a dominant role in regularity theory of the Boussinesq equations.