• Title/Summary/Keyword: anionic surfactant

Search Result 264, Processing Time 0.032 seconds

Synergistic Surface Activities and Phase Behavior in Mixtures of a Diglyceryl Cationic Surfactant and a Conventional Anionic Surfactant (디글리세릴계 양이온계면활성제와 일반 음이온계면활성제 혼합물에서의 계면활성 상승효과와 상거동)

  • Choi, Jeong-Jin;Cho, Wan-Goo;Rang, Moon-Jeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.799-805
    • /
    • 2008
  • In general, anionic and cationic surfactants are incompatible because their mixtures form insoluble complexes and precipitate in the water. There are, however, some equimolar complexes of anionic and cationic surfactant that are soluble and behave like regular surfactants, specifically like nonionic surfactants, thus named pseudo-nonionic surfactant complexes. Pseudo-nonionic complexes are more effective and efficient in surface activities than their ionic surfactant components as shown by their equilibrium and dynamic surface tensions. They pack at the interface more than their ionic components. When a novel cationic surfactant, diglyceryl dodecyl dimethyl ammonium chloride(DGDAC), having the polyhydroxyl group at the hydrophilic head group, was mixed with a conventional anionic surfactant (sodium dodecyl sulfate; SDS) at equimolar ratio, we found that the aqueous equimolar mixture showed strong positive synergism in which molecular interaction parameter ${\beta}^M$ was very low, -17.2. According to the studies of equilibrium phase behavior and microscopy, this mixed system could form homogenous solutions containing vesicles.

Suspension Stability of Pigments in Aqueous Solution of Anionic Oligo-Type Surfactants(part 3);Synthesis of Anionic Oligo Surfactant having Fluorescent Intensity and Their Properties (올리고머형 음이온성계면활성제 수용액에서 안료의 분산안정성(제 3보);형광성이 큰 올리고머 계면활성제의 합성 및 그의 계면성)

  • Lee, H.W.;Lee, J.H.;Ju, M.J.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.109-115
    • /
    • 1997
  • Fluorescent anionic oligo surfactants were synthesized by the condensing products of long chain alkylvinylether-maleic anhydride cooligomers and resorcinol including dye structures. Their various surface activities and dispersing action were studied on the aqueous solution. These oligo surfactants exhibited a remarkable surface tension lowering property, lower foaming and a large dispersing action for the particles of ${\alpha}-copper$ phthalocyanine blue. Further it was ascertained that the binding of oligo surfactant onto the pigment surface caused the deviation towards lower wavelengths at the maximum fluorescent intensity as compared with aqueous oligo surfactant solutions, These surface active properties of the oligo surfactants may be attributed to rigid and hydrophobic structure of dye groups, besides surface-active groups of alkylether groups and carboxylic group of the anionic oligo surfactants.

Synthesis of Carboxylate-Based Anionic surfactant from Coconut Oil Source and Characterization of Interfacial Properties (코코넛 오일로부터 유래된 카르복실레이트계 음이온 계면활성제의 합성 및 계면 특성에 관한 연구)

  • Lee, Ye Jin;Park, Ki Ho;Shin, Hee Dong;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.260-267
    • /
    • 2021
  • In this study, a carboxylate-based anionic surfactant SLEC-3 was prepared from coconut oil and the structure was elucidated by using FT-IR, 1H-NMR and 13C-NMR analysis. Measurements of interfacial properties such as critical micelle concentration, static and dynamic surface tensions, emulsification index, and foam stability have shown that SLEC-3 is better in terms of interfacial activity and more effective in lowering interfacial free energy than those of SLES, which has been widely used as a conventional anionic surfactant in the detergent industry. Biodegradability, acute oral toxicity and dermal irritation tests also revealed that SLEC-3 surfactant possesses excellent mildness and low toxicity, indicating the potential applicability in detergents and cleaner products formulation.

Preparation and Characteristics of Anionic Surfactant Using Waste Fleshing Scrap (피혁 제조 공정 중 발생하는 폐돈지를 이용한 음이온성 계면활성제 제조 및 특성)

  • Shin, Soo-Beom;Min, Byung-Wook;Yang, Seung-Hun;Park, Min-Seok;Won, Gi-Chun;Paek, Doo-Hyeon
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.31-36
    • /
    • 2006
  • Study has been made for producing anionic surfactant using waste fleshing scraps from the leather making process through refining, esterification, sulfonation and blending processes. As a most optimum lard oil refining method, refining was carried out for 4 hours under temperature of $120^{\circ}C$ and approximately 200 mbar vacuum, which gave a recovery of more than 80% lard oil. Refined lard oil obtained thus was undergone methlyl-esterification, then sulfonated to make a degreasing agent. By methyl-esterification using lard oil, more than 85% of fatty acid and $12{\sim}13%$ of glycerine were extracted from the oil. Sulfonation of the extracted fatty acid ester lard oil has shown most optimum at $15{\sim}20%$ chlorosulfonic acid content, and the content of bonding sulfate at this time was higher than 3.5%. Finally the followed anionic surfactant having degreasing force of 80% and higher could be made by blending process.

Synthesis and Evaluation of N-(2,3-dihydroxypropyl)-N,N-dimethyldodecane-1-amine chloride (N-(2,3-dihydroxypropyl)-N,N-dimethyldodecane-1-amine chloride의 합성과 평가)

  • Cho, Wan-Goo;Choi, Jeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.23-31
    • /
    • 2008
  • In general, anionic and cationic surfactants are incompatible because their mixtures form insoluble complexes. There are, however, some complexes that are soluble and behave like regular surfactants, specifically like nonionic surfactants, thus named pseudo-nonionic surfactant complexes. Pseudo-nonionic complexes are more effective and efficient than their ionic surfactant components as shown by their equilibrium and dynamic surface tensions and interfacial tensions. They pack at the interface more than their ionic components. Since, pseudo-nonionic complexes show their own characteristics, they can be treated as separate classes of surfactants distinct from ionic and nonionic surfactants. Novel cationic surfactant was synthesized, having the polyhydroxyl group at the head group. We found that aqueous mixtures of our cationic surfactant and usual anionic surfactant(SDS) could form homogeneous solutions even at high concentration. The properties of mixed surfactant solutions were measured. Foam stability, CMC(critical micelle concentration), water hardness tolerance and thickening effect were tested. The foam stability of mixed surfactants was very good and various synergy effects were observed.

Synthesis and Properties of Anionic Surfactants Using Sarcosine and Taurine (사코진과 타우린을 이용한 음이온 계면활성제의 합성 및 물성)

  • Cho, Jung-Eun;Shin, Hye-Rin;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.102-107
    • /
    • 2019
  • Anionic surfactants were synthesized by using an sarcosine, taurine and fatty alcohol with varying the carbon chain length. The structure of synthesized surfactants was confirmed by $^1H$ NMR analysis. The critical micelle concentration of the synthetic anionic surfactant was $10^{-2}{\sim}10^{-4}mol/L$ and the surface tension value at the critical micelle concentration was between 21 and 39 mN/m. It was confirmed by the Ross-Miles method that the synthetic surfactant with the carbon chain of 12 showed a good foaming power and stability. In addition, the surfactant using the sacosine was found to have a good affinity in soybean oil while that using taurine in benzene. The physical properties of synthesized surfactants were determined by measuring the critical micelle concentration, foaming power and emulsifying stability.

Release of Cu from SDS micellar solution using complexing agents

  • 김호정;백기태;김보경;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.307-310
    • /
    • 2004
  • Micellar enhanced ultrafiltration (MEUF) is a surfactant-based separation process and it can remove heavy metal ions from aqueous stream effectively. However, it is necessary to recover and reuse surfactants for economic feasibility because surfactant is expensive. Foam fractionation was investigated for both anionic and cationic surfactant recovery. Chelating agent such as ethylenediaminetetraacetic acid (EDTA) was studied for the separation of heavy metals from surfactant solution. Anionic surfactants bound with heavy metals can be recovered by lowering pH (acidification). In this study, citric acid and imminodiacetic acid (IDA) were applied to release copper from sodium dodecyl sulfate (SDS) micellar solution and compared with EDTA. Precipitation of copper by ferricynide and sodium sulfide were also investigated. As a result, ca. 100 % of copper was released from SDS micellar solution by 5 mM of EDTA and citric acid. And 3.3 mM of ferricyanide formed precipitate with 82.7 % of copper. 5 mM of IDA and sodium sulfide released or formed precipitate 82.5 % and 58.9 % of copper, respectively. Citric acid is harmless to environments and ferricyanide precipitates with Cu easily. Therefore, it is considered that citric acid and ferricyanide have competiveness over a famous chelating agent, EDTA, for the separation of Cu from SDS solution.

  • PDF

Surface-Active Properties of Sodium bis-Alkyl Sulfonatosuccinate (술폰화된 호박산 알킬에스테르류의 계면성)

  • Kim, Myeong-Soo;Jeong, Hwan-Kyeong;Yoon, In-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Recently, there has been considerably interested in the development to new functional gemini type anionic surfactant, sodium bis-n-alkyl sulfonatosuccinate, had been synthesized through the addition reaction of sodium bisulfite to bis-n-alkyl maleate, in which water was azeotropically distilled by adding benzene to the reaction system, gave a good yield. All the surface activities including krafft point, surface tension, emulsion power and foaming were measure and cmc was evaluated in dilute solution. This results showed a lower ability in $27{\sim}30dyne/cm$ than single-chain surfactant with $32{\sim}35dyne/cm$ to surface tension. Also its cmc value much smaller in $(6.5{\sim}10){\times}10^{-4}mca{\ell}/{\ell}$ than single-chain surfactant with $(40{\sim}45){\times}10^{-4}mca{\ell}/{\ell}$ concentration. In foaming ability and foam stability of gemini surfactant had especially a good ability in approximately $100{\sim}150ml$, and in emulsing power they exhibited a good emulsing phase and stability, and Krafft points were $0{\sim}10^{\circ}C$.

Effect of methane gas hydrate formation of Anionic multichain type surfactant (음이온 멀티체인형 계면활성제의 메탄 가스 하이드레이트 형성시 효과)

  • Kwon, Young-Ah;Jeong, Kwang-Eun;Park, Jong-Mok;Kim, Chul-Ung;Chae, Ho-Jeong;Jeong, Soon-Yong;Yim, Jin-Heong;Lee, Ju-Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.712-715
    • /
    • 2009
  • 본 연구에서는 고밀도, 고촉진 가스하이드레이트 생성 촉진제 (promoter)의 개발을 위하여 음이온성 멀티체인형 게면활성제를 제조하였다. 또한 각 계면활성제의 알킬그룹의 길이에 따라 같은 조건에서의 계면활성제의 촉진 효과를 비교하였다. $1^{\circ}C$에서 35bar,40bar로 압력을 달리하여 비교 실험하여 메탄 하이드레이트 생성속도를 측정하고, 각 조건에서의 계면활성제의 촉진 효과를 비교하였다. 알킬그룹의 길이가 짧을수록, 압력이 높을수록 촉진 속도가 빠르다. 또한 기존의 상용화된 SDS(Sodium dodecyl sulfate)보다 본 연구에서 제조한 C10의 음이온성 멀티체인형 계면활성제가 SDS 대비하여 소량으로도 충분한 효과를 나타냄을 확인하였다.

  • PDF

Antioxidative Effect of Crude Anthocyanins in Water-in-Oil Microemulsion System

  • Oh, Ju-Kyoung;Kim, Seok-Joong;Imm, Jee-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.283-288
    • /
    • 2006
  • Antioxidative ability of anthocyanins in water-in-oil microemulsion was examined. Microemulsion was prepared by solubilizing crude anthocyanins extracted from grape skin (Cambell early) in organic solvent (hexane) containing anionic surfactant [bis (2-ethylhexyl) sodium sulfosuccinate, AOT] and linolenic acid (10%, w/v). Lipid oxidation significantly decreased with increasing concentration of anthocyanins ($5-20\;{\mu}M$) at micellar phase, and increasing micelle size ($Wo=5-20\;{\mu}M$). At given micelle size (Wo=10), lipid oxidation decreased as number of micelles decreased. These results indicate antioxidative ability of anthocyanins is critically affected by water core and micelle structure formed by surfactant. Interactions between AOT and anthocyanins decreased antioxidative ability of anthocyanins. Antioxidative ability of anthocyanins significantly increased when ${\alpha}$-tocopherol was added into organic phase. This indicates of synergism between the two antioxidants.