• Title/Summary/Keyword: anion exchange membrane

Search Result 199, Processing Time 0.028 seconds

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

Preparation and Characterization of Hydrophilic Aminated poly(styrene-ethylene-butylene-styrene) Polymer Membrane (친수성 아민화된 poly(styrene-ethylene-butylene-styrene) 고분자 분리막 제조 및 투습도 특성평가)

  • Son, Tae Yang;Kim, Ji Hyun;Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.336-343
    • /
    • 2017
  • These days, the quality of indoor air is a very important concept for modern people who have lived in building and is a matter of new thinking. The quality is determined by the temperature and humidity of indoor air. In addition, there is a disadvantage in that energy consumption is severe for indoor air improvement. Therefore, researches on methods to solve such problems using total heat exchange have been actively conducted. So, in this study, aminated poly(styrene-ethylene-butylene-styrene) polymers were synthesized by introducing a hydrophilic substituent, ammonium, into main chain and the properties of synthesized polymers were evaluated. The synthesis was carried out through chloromethylation and amination reactions to introduce ammonium into main chain. As a result, the water uptake and the ion exchange capacity of the synthesized polymers increased as the content of the reaction reagent solution increased. It was confirmed that the important data at the total heat exchange membrane, water vapor transmission rate also increased according to temperature, equivalent.

Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells

  • Lee, Kang-yu;Choi, In-kwon;Lim, Kyeong-ho
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.443-448
    • /
    • 2019
  • The present study was conducted to compare the voltage generation in two-chamber microbial fuel cells (MFCs) with a biocathode where nitrate and oxygen are used as a terminal electron acceptors (TEA) and to investigate the nitrogen removal and the electrochemical characteristics depending on the separators of the MFCs for denitrification. The maximum power density in a biocathode MFC using an anion exchange membrane (AEM) was approximately 40% lower with the use of nitrate as a TEA than when using oxygen. The MFC for denitrification using an AEM allows acetate ($CH_3COO^-$) as a substrate and nitrate ($NO_3{^-}$) as a TEA to be transported to the opposite sides of the chamber through the AEM. Therefore, heterotrophic denitrification and electrochemical denitrification occurred simultaneously at the anode and the cathode, resulting in a higher COD and nitrate removal rate and a lower maximum power density. The MFC for the denitrification using a cation exchange membrane (CEM) does not allow the transport of acetate and nitrate. Therefore, as oxidation of organics and electrochemical denitrification occurred at the anode and at the cathode, respectively, the MFC using a CEM showed a higher coulomb efficiency, a lower COD and nitrate removal rate in comparison with the MFC using an AEM.

Preparation and Properties of Aminated Poly(ethersulfone) Ion-Exchange Membrane by UV Irradiation Method (UV 조사에 의한 아민화 Poly(ethersulfone) 이온교환막의 제조 및 특성)

  • Choi, Kuk-Jong;Hwan, Eui-Hwan;Rhee, Young-Woo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • The PES-g-BTCA membrane was synthesized by UV irradiation method and then used to be modified into the PES anion exchange membrane by the amination reaction. Their chemical structures and adsorption properties were investigated. The degree of grafting and amination were increased with increasing the reaction time and had the maximum values of 138% and 1.20 mmol/g at 80 min, respectively. The initial thermal degradation temperature of PES membrane was $400^{\circ}C$. Which was reduced as the surface modification reaction had proceeded. The values of contact angle for PES membrane were decreased from 68.1 to $40.2^{\circ}$ with increasing the extent of amination, the water up-take and ion exchange capacity were also increased with increasing UV irradiation time until 80 min. The average pore size and BET surface area were decreased in order of PES, PES-g-BTCA, and aminated PES ion exchange membrane. Their average pore sizes were 624.8, 359.7, and 138.5 ${\AA}$, and their surface areas were 10.1,9.7 and 1.7 $m^2/g$, respectively.

Recent Trends and Future Perspectives of the Magnesium Recovery based on Electrolysis (전해 기반 마그네슘 회수 기술의 관련 동향 및 향후 전망)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.16-23
    • /
    • 2024
  • The electrolysis for extracting magnesium from seawater or brine primarily involves recovery of magnesium via precipitation as the form of magnesium hydroxide. The technology is classified into cation-exchange membranes (CEM), anion-exchange (AEM) membranes, electrodialysis, and membraneless methods. Recent research has focused on enhancing the efficiency and selectivity of magnesium recovery from seawater or brine containing magnesium, with expectations of effective magnesium recovery even with normal seawater. In a future, the optimization of the selective and efficient recovery of magnesium and various valuable substances through long-term operation of scaled-up systems is crucial with enhancing economic and environmental viability. It is essential to realistically estimate operational costs considering the membrane's lifespan and replacement cycle. Also, detailed and practical process models should be developed based on monitoring data on various factors.

Preconcentration and Determination of Trace Cobalt and Nickel by the Adsorption of Metal-PDC Complexes on the Anion-Exchange Resin Suspension (금속-PDC 착물의 음이온교환 수지 상 흡착에 의한 흔적량 코발트와 니켈의 동시 예비농축 및 정량)

  • Han, Chul-Woo;In, Gyo;Choi, Jong-Moon;Kim, Sun Tae;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.608-615
    • /
    • 2000
  • A determination method of trace nickel and cobalt in water samples was studied and developed by adsorbing their complexes on ion exchange resin suspension. The analytical ions were formed as complexes with a ligand of APDC (ammonium pyrrolidinedithiocarbamate) and adsorbed on anion exchange resin of Dowex 2-X8. After the suspension was filtered out with membrane filter, the complexes were dissolved in HCl solution by an ultrasonic vibrator for ET-AAS determination. Several conditions were optimized as followings. pH of sample solution: 5.0, amount of ligand APDC: more than 430 times in mole ratio, the type and concentration of acid: 0.1 M HCl, and vibration time: 7 minutes. The addition of palladium in the HCl solution could improve the reproducibility and sensitivity by a matrix modification in the absorbance measurement. This procedure was applied for the analysis of three kinds of real water samples. The detection limits equivalent to 3 times standard deviation of blank were Co 0.36 ng/mL and Ni 0.27 ng/mL and recoveries in spiked samples were 99-102% for cobalt and 100-105% for nickel.

  • PDF

Production of nitric oxide by murine macrophages induced by lipophosphoglycan of Leishmania major

  • KAVOOSI Gholamreza;ARDESTANI Sussan K.;KARIMINIA Amina;TAVAKOLI Zahra
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.1 s.137
    • /
    • pp.35-41
    • /
    • 2006
  • Protozoan parasites of the genus Leishmania cause a number of important human diseases. One of the key determinants of parasite infectivity and survival is the surface glycoconjugate lipophosphoglycan (LPG). In addition, LPG is shown to be useful as a transmission blocking vaccine. Since culture supernatant of parasite promastigotes is a good source of LPG, we made attempts to characterize functions of the culture supernatant, and membrane LPG isolated from metacyclic promastigotes of Leishmania major. The purification scheme included anion-exchange chromatography, hydrophobic interaction chromatography and cold methanol precipitation. The purity of supernatant LPG (sLPG) and membrane LPG (mLPG) was determined by SOS-PAGE and thin layer chromatography. The effect of mLPG and sLPG on nitric oxide (NO) production by murine macrophages cell line (J77 4.1 A) was studied. Both sLPG and mLPG induced NO production in a dose dependent manner but sLPG induced significantly higher amount of NO than mLPG. Our results show that sLPG is able to promote NO production by murine macrophages.

The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple (다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가)

  • Park, GyunHo;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.868-873
    • /
    • 2019
  • In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn't work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was $40mA{\cdot}cm^{-2}$ and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was $1.44Ah{\cdot}L^{-1}$ which was 54% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $10^{th}$ cycle and the capacity loss rate was $0.0015Ah{\cdot}L^{-1}$ per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.

Production of Sulfuric Acid and Ammonia Water from Ammonium Sulfate Using Electrodialysis with Bipolar Membrane and Ammonia Stripping

  • Yeon Kyeong-Ho;Song Jung-Hoon;Shim Bong-Sup;Moon Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • The feasibility of producing sulfuric acid and ammonia water from ammonium sulfate was investigated by an integrated process including ammonia stripping (AS) and electrodialysis with bipolar membrane (EDBM). It was suggested that the production of sulfuric acid using ammonia stripping-electrodialysis with bipolar membrane (ASEDBM) was effective in obtaining high concentration of sulfuric acid compared with EDBM alone. AS was carried out over pH 11 and within the range of temperatures, $20^{\circ}C{\~}60^{\circ}C$. Sodium sulfate obtained using AS was used as the feed solution of EDBM. The recovery of ammonia increased from $40\%$ to $80\%$ at $60^{\circ}C$ due to the increased mobility of ammonium ion. A pilot-scale EDBM system, which is composed of two compartments and 10 cell pairs with an effective membrane area of $200 cm^2$ per cell, was used for the recovery of sulfuric acid. The performance was examined in the range of 0.1 M${\~}$1.0 M concentration of concentrate compartment and of $25 mA/cm^2{\~}62.5 mA/cm^2$ of current density. The maximum current efficiency of $64.9\%$ was obtained at 0.1 M sulfuric acid because the diffusion rate at the anion exchange membrane decreased as the sulfuric acid of the concentrate compartment decreased. It was possible to obtain the 2.5 M of sulfuric acid in the $62.5 mA/cm^2$ with a power consumption of 13.0 kWh/ton, while the concentration of sulfuric acid was proportional to the current density below the limiting current density (LCD). Thus, the integrating process of AS-EDBM enables to recover sulfuric acid from the wastewaters containing ammonium sulfate.

Purification of Hydrogenases from Purple Sulfur Bacterium Thiocapsa roseopersicina Using Various Applications of Chromatography (홍색 유황세근 Thiocapsa roseopersicina로 부터 생산되는 Hydrogenase의 각종 크로마토그래피에 의한 정제)

  • Choi, Eun-Hye;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.124-131
    • /
    • 2008
  • Crude cytoplasmic fraction of phototrophic purple sulfur bacterium, Thiocapsa roseopersicina NCIB 8347, were initially prepared and purified by sonication, ultracentrifugation, ammonium sulfate fractionation and heat-treatment and it has been previously reported. Using various applications of chromatography far the purification of membrane-bound and soluble hydrogenases from heat-treated enzyme fraction were studied at present report. When the heat-treated enzyme preparation was applied to the anion column chromatography using Q-sepharose, Fraction I and II, which were extracted with the KCl 0-0.5 M gradient, showed the specific evolution hydrogenase activity 3.86 and 2.27 U/mg-protein respectively. Specific hydrogenase activitys of Fraction I and II were further increased to 4.35 and 7.46 U/mg-protein for Fraction I and to 2.49 and 4.41 U/mg-protein fur Fraction II respectively, when hydrophobic interaction column, Phenyl superose, and anion exchange column, Mono-Q, were applied. Size exclusion chromatography using superdex 200 concentrated the hydrogenase Fraction I and II to 9.19 and 7.84 U/mg-protein respectively at the final step of purification.