• Title/Summary/Keyword: anion exchange membrane

Search Result 200, Processing Time 0.02 seconds

Alkali Recovery by Electrodialysis Process: A Review (전기투석 공정에 의한 알칼리 회수: 총설)

  • Sarsenbek Assel;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Electrodialysis (ED) is essential in separating ions through an ion exchange membrane. The disposal of brine generated from seawater desalination is a primary environmental concern, and its recycling through membrane separation technology is highly efficient. Alkali is produced by several chemical industries such as leather, electroplating, dyeing, and smelting, etc. A high concentration of alkali in the waste needs treatment before releasing into the environment as it is highly corrosive and has a chemical oxygen demand (COD) value. The concentration of calcium and magnesium is almost double in brine and is the perfect candidate for carbon dioxide adsorption, a major environmental pollutant. Sodium hydroxide is essential for the metal carbonation process which, is easily produced by the bipolar membrane electrodialysis process. Various strategies are available for its recovery, like reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and ED. This review discusses the ED process by ion exchange membrane for alkali recovery are discussed.

Preparation and Characterizations of Ionomer-coated Pore-filled Ion-exchange Membranes for Reverse Electrodialysis (역전기투석 응용을 위한 이오노머가 코팅된 세공충진 이온교환막의 제조 및 특성분석)

  • Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.43-54
    • /
    • 2016
  • In this study, we have prepared engineering polymer-based ionomers and pore-filled ion-exchange membranes (PFIEMs) employing a porous polyethylene substrate and combined them to fabricate the ionomer-PFIEM composite membranes for the reverse electrodialysis (RED) application. Both the electrochemical properties comparable to those of the commercial ion-exchange membranes (AMX/CMX, Astom Corp., Japan) and the physical stability adaptable to the practical uses have been achieved by integrating the ionomers having a high ion conductivity and the PFIEMs with an excellent mechanical strength. The RED performances have been evaluated by employing the prepared ionomer-PFIEM composite membranes and therefore excellent power generation performances were shown as the levels of 86.4% and 104.8% for the anion-exchange membrane and cation-exchange membrane, respectively, compared with those of the commercial membranes.

A Study on the Characteristic and Preparation of PEM for DMFC using EPS, SAN, HIPS (EPS, SAN, HIPS를 이용한 직접 메탄올 연료전지용 고분자 전해질 막의 제조 및 그 특성에 관한 연구)

  • Song, Ju-Yeong;Kim, Hi-Youl;Kim, Jong-Hwa;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • In this study, we prepared porous cation exchange membrane using polystyrene such as, EPS (expanded polystyrene), SAN (styrene acrylonitrile copolymer) and HIPS (high impactive polystyrene). These polystyrenes were sulfonated by acetyl sulfate to make porous cation exchange membrane such as, SEPS, SSAN, SHIPS. SEM was employed to confirm porous structure of membrane, and IR spectroscopy was used to confirm sulfonation rate of ion exchange membrane. Water and methanol content were also increased with amount of sulfuric acid in reactants. SSAN-20 showed the highest value in water and methanol content. Fixed ion concentration and conductivity was also increased with an amount of sulfuric acid in reactants. Methanol permeability for SEPS-20, SSAN-20, SHIPS-20 was found to be $1.326\;{\times}\;10^{-5}\;cm^2/s$, $1.527\;{\times}\;10^{-5}\;cm^2/s$ and $1.096\;{\times}\;10^{-5}\;cm^2/s$ respectively. From the result of electrodialysis experiment in 0.03 M $Pb(NO_3)_2$ aqueous solution, anion exclusion and cation selection effects were confirmed.

Optimization of Operating Parameters for Alkaline Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해의 운전 조건 최적화)

  • Jang, Myeong-Je;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.151-151
    • /
    • 2016
  • 수소는 친환경 에너지원으로 주목 받고 있으며 미래 화석연료의 고갈에 대비할 수 있는 물질이다. 수전해는 natural gas steam reforming 또는 coal gasification 같은 방법에 비해 공해 물질의 방출이 없어 미래지향적인 기술로 간주된다. 저온형 수전해는 크게 알칼리 수전해와 고분자 전해질막 수전해로 구분되며 각각의 기술은 장단점을 가지고 있다. 알칼리 수전해는 비백금계 물질을 촉매로 사용할 수 있는 이점이 있으나 알칼리 용액으로 인한 부식, 높은 과전압에 의한 효율저하 그리고 간헐적인 사용에 적합하지 않다. 고분자 전해질막 수전해는 간헐적인 사용이 용이하고 높은 에너지 밀도를 가지지만 산성분위기로 인한 백금계 촉매를 사용해야 하므로 수소 생산 비용이 증가하게 된다. 본 연구에서는 알칼리 수전해와 고분자 전해질막 수전해 방식의 이점을 최대한 이용하고 단점을 극복하기 위한 방법으로 음이온 교환막(anion exchange membrane, AEM)을 적용한 셀 구조를 소개한다. 본문에서는 AEM 수전해 단위 셀의 구성요소들인 AEM 종류, 가스 확산층의 밀도와 운전조건인 알칼리 수용액 농도, 온도의 조건을 다르게 하여 최상의 구성 요소 조건 및 운전조건을 알아보았다.

  • PDF

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System (Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향)

  • LU, LIXIN;DAI, GUANXIA;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction (자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성)

  • ZHANG, PENGFEI;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Effect of Cadmium on Organic Acid Transport System in Renal Basolateral Membrane

  • Kim, Ghi-Chan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.279-288
    • /
    • 1996
  • Chronic exposure to cadmium impairs various renal tubular functions, including organic acid (anion) secretion. To investigate the mechanism of cadmium-induced alterations in the organic anion transport system, kinetics of p-aminohippurate (PAH) uptake was studied in renal cortical basolateral membrane vesicles (BLMV) isolated from cadmium-intoxicated rats (adult male Sprague-Dawley). Cadmium intoxication was induced by subcutaneous injections of $CdCl_{2}$ (2 mg Cd/kg per day) for 3 weeks. The renal plasma membrane vesicles were prepared by Percoll gradient centrifugation. The vesicular uptake of $^{14}C$-PAH was determined by rapid filtration technique using Millipore filter. Cadmium intoxication resulted in a marked attenuation of $Na^{+}$-dependent, ${\alpha}$-ketoglutarate (${\alpha}$KG)-driven PAH uptake with no changes in $Na^{+}$ and ${\alpha}$KG-independent transport component. Kinetic analysis indicated that Vmax, but not Km, of the $Na^{+}$-dependent, ${\alpha}$KG-driven component was reduced. A similar reduction of $Na^{+}$-dependent, ${\alpha}$KG-driven PAH uptake was observed in normal membrane vesicles directly exposed to inorganic cadmium in vitro, and this was accompanied by an inhibition of both $Na^{+}$-dependent ${\alpha}$KG uptake and ${\alpha}$KG-PAH exchange activity. These results indicate that during chronic exposure to cadmium, free cadmium ions liberated in the proximal tubular cytoplasm directly interact with the basolateral membrane and impair the active transport capacity for organic anions, most likely due to an inhibition of both $Na^{+}$-dicarboxylate cotransporter and dicarboxylate-organic anion antiporter activities.

  • PDF

Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

  • Lee, Bo-Kyoung;Lee, Chong-Keun;Lee, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2039-2044
    • /
    • 2011
  • A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with $r^2$ = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, $r^2$ = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.