• Title/Summary/Keyword: animal fat/oil

Search Result 273, Processing Time 0.027 seconds

Effects of Fat Sources on Growth Performance, Nutrient Digestibility, Serum Traits and Intestinal Morphology in Weaning Pigs

  • Jung, H.J.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1035-1040
    • /
    • 2003
  • This experiment was conducted to investigate the effects of fat sources on growth performance, nutrient digestibility, serum traits and intestinal morphology in weaning pigs. A total of 128 weaning pigs (Landrace${\times}$Large White${\times}$Duroc, $21{\pm}2$ days of age, $5.82{\pm}0.13kg$ of average initial body weight) were allotted in a randomized complete block (RCB) design with four treatments: 1) corn oil, 2) soybean oil, 3) tallow and 4) fish oil. Each treatment had 8 replicates with 4 pigs per pen. During phase I period (d 0 to 14), pigs fed corn oil or soybean oil diet tended to show higher ADG and FCR than any other treatments although there was no significant difference. During phase II period (d 15 to 28), pigs fed corn oil diet showed better ADG and ADFI than pigs fed soybean oil, tallow or fish oil. For overall period, growth performance of weaning pigs was improved (p<0.05) when pigs were fed soybean oil or corn oil. Apparent digestibility of energy and fat was improved when pigs were fed corn oil diet (p<0.05). Supplementation of corn oil resulted in higher serum triglyceride concentration than the other treatments (p<0.05). However, there was a lower cholesterol concentration when corn oil was provided compared to tallow or fish oil. Pigs fed corn oil tended to have increased villus height compared with soybean oil, tallow or fish oil treatment (p<0.05). This experiment suggested that vegetable oils such as corn oil or soybean oil, were much better fat source for improving growth performance of weaning pigs.

Effect of the Mixed Oil and Monensin Supplementation, and Feeding Duration of Supplements on c9,t11-CLA Contents in Plasma and Fat Tissues of Korean Native (Hanwoo) Steers

  • Wang, J.H.;Choi, S.H.;Lim, K.W.;Kim, K.H.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1464-1469
    • /
    • 2006
  • The present study was conducted with twenty-four Korean native (Hanwoo) steers to observe the effect of mixed oil and monensin supplementation and duration of feeding on c9,t11-CLA content in plasma and fat tissues. The steers were randomly assigned to three groups of eight animals each according to body weight. Hanwoo steers in the control group were fed the commercial concentrate for the late fattening stage. The other groups of steers were fed the same diet as control steers, but the concentrate was supplemented with high-$C_{18:2}$ oil mixture (soybean oil, sunflower oil, safflower oil) and fish oil at 6% level of concentrate (DM basis), and monensin (20 ppm). The second and third group of steers was fed the oil mixture supplemented diet with monensin for the last 10 weeks and 20 weeks, respectively, prior to being slaughtered. The oil mixture consisted of 45% soybean oil, 20% sunflower oil, 20% safflower oil and 15% fish oil. Average daily gain (p<0.049) and feed efficiency (p<0.018) of the steers fed the diet supplemented with oil mixture and monensin (OM-M) for 20 weeks were higher than those of the other groups of steers. Dressing percent, fat thickness and longissimus muscle area were not affected by the OM-M supplementation and duration of its feeding. The OM-M supplementation increased the content of total-cholesterol (p<0.0001-0.0007) and HDL-cholesterol (p<0.0001) in the plasma of steers compared to the control diet. The steers fed the OM-M diet had a higher proportion of c9,t11-CLA in plasma (p<0.048-0.044) than the control steers. Feeding the OM-M diet for 20 weeks increased the proportion of CLA in intramuscular (p<0.015), intermuscular (p<0.039) and subcutaneous (p<0.001) fat tissues compared with both steers fed the control diet and the OM-M diet for 10 weeks. Increased (p<0.007) proportion of total unsaturated fatty acids in steers fed the OM-M diet for 20 weeks compared to those in control steers was related to the increased (p<0.001) $C_{18:2}$ and decreased (p<0.001) $C_{18:0}$ proportions in subcutaneous tissue.

Quality Characteristics of Low-Fat Plant Oil Emulsion Pork Patties (식물성유 유화물로 대체한 저지방 돈육 패티의 품질 특성)

  • Choi, Young-Joon;Lee, Si-Hyung;Lee, Kyoung-Sook;Choi, Gang-Won;Lee, Kyung-Soo;Jung, In-Chul;Shim, Dong-Wook
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1351-1357
    • /
    • 2019
  • This study investigated the effect of plant oil emulsion as a replacement for animal fat on the quality characteristics of low-fat pork patties. Pork patties were manufactured using a pork fat control (CON) and olive (OPP), soybean (SPP), and canola (CPP) oil emulsions. Replacing animal fat with the plant oil emulsions increased the moisture content and decreased the fat content of the patties as compared to those with pork fat. The water holding capacity and cooking yield, and the moisture and fat retention of the patties were significantly increased, and the diameter reduction and shrinkage ratio decreased with the plant oil replacements. The color parameters of the samples were affected by the addition of the plant oil emulsions, and higher L* and a* values were observed in CON. The b* value of the raw pork patty was highest in OPP, and palmitic acid was the most abundant saturated fatty acid. In terms of unsaturated fatty acids, oleic acid was highest in CON, OPP, and CPP, and linoleic acid was highest in SPP. Hardness, cohesion, and chewiness were no different among the samples, although higher springiness was observed in the pork patties with added plant oil emulsions. The taste, flavor, and palatability of the OPP and CPP patties were higher than in the CON and SPP groups. Fat replacement with plant oil emulsion therefore had a positive effect on the quality characteristics of the pork patties, and due to reduced saturated fatty acids, the end-product provides the healthy low-fat option desired by consumers.

Influence of Supplementing Dairy Cows Grazing on Pasture with Feeds Rich in Linoleic Acid on Milk Fat Conjugated Linoleic Acid (CLA) Content

  • Khanal, R.C.;Dhiman, T.R.;Boman, R.L.;McMahon, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1374-1388
    • /
    • 2007
  • Three experiments were conducted to investigate the hypothesis that cows grazing on pasture produce the highest proportion of c-9 t-11 CLA in milk fat and no further increase can be achieved through supplementation of diets rich in linoleic acid, such as full-fat extruded soybeans or soybean oil. In experiment 1, 18 lactating Holstein cows were used in a randomized complete block design with measurements made from wk 4 to 6 of the experiment. In experiment 2, three cannulated lactating Holstein cows were used in a $3{\times}3$ Latin square design. Each period was 4 wk with measurements made in the final wk of each period. Cows in both experiments were assigned at random to treatments: a, conventional total mixed ration (TMR); b, pasture (PS); or c, PS supplemented with 2.5 kg/cow per day of full-fat extruded soybeans (PES). In both experiments, feed intake, milk yield, milk composition, and fatty acid profile of milk and blood serum were measured, along with fatty acid composition of bacteria harvested from rumen digesta in experiment 2. In experiment 3, 10 cows which had continuously grazed a pasture for six weeks were assigned to two groups, with one group (n = 5) on pasture diet alone (PS) and the other group (n = 5) supplemented with 452 g of soy oil/cow per day for 7 d (OIL). In experiment 1, cows in PS treatment produced 350% more c-9, t-11 CLA compared with cows in TMR treatment (1.70 vs. 0.5% of fat), with no further increase for cows in PES treatment (1.50% of fat). Serum c-9, t-11 CLA increased by 233% in PS treatment compared with TMR treatment (0.21 vs. 0.09% of fat) with no further increase for cows in PES treatment (0.18% of fat). In experiment 2, cows in PS treatment produced 300% more c-9 t-11 CLA in their milk fat compared with cows in TMR treatment (1.77 vs. 0.59% of fat), but no further increase for cows in PES treatment (1.84% of fat) was observed. Serum c-9, t-11 CLA increased by 250% for cows in PS treatment compared with cows in TMR treatment (0.27 vs. 0.11% of fat), with no further increase for cows in PES treatment (0.31% of fat). The c-9, t-11 CLA content of ruminal bacteria for cows in PS treatment was 200% or more of TMR treatment, but no further increase in bacterial c-9, t-11 CLA for cows in PES treatment was observed. Supplementation of soy oil in experiment 3 also did not increase the c-9 t-11 CLA content of milk fat compared with cows fed a full pasture diet (1.60 vs. 1.54% of fat). Based on these findings, it was concluded that supplementing with feeds rich in linoleic acid, such as full-fat extruded soybeans or an equivalent amount of soy oil, to cows grazing perennial ryegrass pasture may not increase milk fat c-9 t-11 CLA contents.

Milk Conjugated Linoleic Acid Response to Fish Oil and Linseed Oil Supplementation of Grazing Dairy Cows

  • Brown, W.;AbuGhazaleh, A.A.;Ibrahim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.663-670
    • /
    • 2008
  • The effect of supplementing the diet of grazing dairy cows with fish oil (FO) and linseed oil (LSO) on milk conjugated linoleic acid (CLA) was investigated. Sixteen Holstein cows (17019 DIM) were assigned into two groups and fed a grain supplement (8.0 kg/d; DM basis) containing 800 g of saturated animal fat (CONT) or 200 g FO and 600 g LSO (FOLSO). All cows grazed together on Sudan grass pasture ad libitum and were fed the treatment diets for 3 wks. Cows were milked twice a day and milk samples were collected during the last three days of the trial. Milk production (24.89 and 22.45 kg/d), milk protein percentage (2.76 and 2.82) and milk protein yield (0.68 and 0.64 kg/d) for the CONT and FOLSO diets, respectively, were not affected (p>0.05) by treatment diets. Milk fat percentage (3.90 and 2.86) and milk fat yield (0.97 and 0.64 kg/d) were lower (p<0.05) with the FOLSO diet compared with the CONT diet. The concentration and yield of milk cis-9 trans-11 CLA were higher (p<0.05) with the FOLSO diet (2.56% of total FA and 16.44 g/d, respectively) than the CONT diet (0.66% of total FA and 6.44 g/d, respectively). The concentrations of milk trans C18:1 and vaccenic acid (VA) were higher (p<0.05) with the FOLSO diet (13.53 and 7.48% of total FA, respectively) than the CONT diet (3.69 and 2.27% of total FA, respectively). In conclusion, supplementing the diet of grazing cows with FO and LSO increased milk cis-9 trans-11 CLA content but reduced milk fat content and yield.

Bypass Fat Production Using Acid Oil, Its Effect on In Vitro Rumen Fermentation and Effect of Its Feeding on In Sacco DM Disappearance in Sheep

  • Garg, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.571-574
    • /
    • 1997
  • Attempts were made in the laboratory to produce bypass fat using acid oil by precipitation and fusion methods. The degree of saponification by both of these methods was above 80 percent. Where heating facilities are not available, precipitation method could be used, otherwise, fusion method of bypass fat production is found to be more convenient, especially for commercial scale operations as handling of large volume of solutions is eliminated. Bypass fat thus produced was tested in vitro for rumen fermentation. Incorporation of acid oil in the incubation medium reduced TVFA conc. from 127.06 to 124.09 mM/l SRL and increased ammonia-N levels from 210.50 to 223 mg/l SRL indicating that the microbial activity was affected on incorporation of acid oil in the incubation medium. However, incorporation of bypass fat in the incubation medium did not significantly affect TVFA conc. as well as ammonia-N levels. In another experiment, nine rumen fistulated sheep in three groups of three each were fed bypass fat at two different levels. Dry matter disappearance in 24 h from the nylon bags suspended in the rumen of animals under different groups was found to be $47.74{\pm}1.10$, $47.55{\pm}0.21$ and $50.74{\pm}1.11$ in group I (control), group II (fed bypass fat 50 g/day) and group III (fed bypass fat 100 g/day), respectively. These studies indicated that it is possible to produce bypass fat from acid oils, a by-product of oil refining process, and its feeding did not affect rumen fermentation.

Evaluation of Soybean Oil as a Lipid Source for Pig Diets

  • Park, S.W.;Seo, S.H.;Chang, M.B.;Shin, I.S.;Paik, InKee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1311-1319
    • /
    • 2009
  • An experiment was conducted to determine the effects of soybean oil supplementation replacing tallow in pig diets at different stages of growth. One hundred and twenty crossbred (Landrace${\times}$Yorkshire${\times}$Duroc) pigs weighing 18 kg on average were selected. Pigs were randomly allotted to 12 pens of 10 pigs (5 pigs of each sex) each. Three pens were assigned to each of the four treatments: TA; tallow diet, TA-SO-80; switched from tallow to soybean oil diet at 80 kg average body weight, TA-SO-45; switched from tallow to soybean oil diet at 45 kg average body weight, and SO; soybean oil diet. Treatment SO was significantly lower in ADG than tallow diets (TA, TA-SO-80 and TA-SO-45) during the grower period (18 to 45 kg). However, treatment SO showed greatest compensation in ADFI and ADG during the finisher-2 period (after 80 kg body weight). ADFI and ADG and Gain/Feed for the total period were not significantly different among treatments. Loin area, back fat thickness, firmness and melting point of back fat were not significantly different. The levels of total cholesterol and low density lipoprotein+very low density lipoprotein cholesterol in serum were significantly lower in treatment SO than in treatments TA-SO-45, TA-SO-80 and TA. The level of serum triglyceride linearly increased as the length of the tallow feeding period increased. Serum immunoglobulin-G (IgG) level was significantly higher in the soybean oiltreatment than in other treatments. Major fatty acid composition of short rib muscle and back fat were significantly influenced by treatments. Contents of ${\alpha}$-linolenic acid (C18:3) and docosahexaenoic acid (DHA, C22:6) linearly increased as the soybean oil feeding period increased. In conclusion, soybean oil can be supplemented to the diet of pigs without significant effects on growth performance and carcass characteristics. The level of polyunsaturated fatty acids (PUFA), especially $\omega-3$ fatty acids in the carcass was increased by soybean oil supplementation.

Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

  • Vafa, Toktam S.;Naserian, Abbas A.;Moussavi, Ali R. Heravi;Valizadeh, Reza;Mesgaran, Mohsen Danesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.311-319
    • /
    • 2012
  • This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows ($42{\pm}12$ DIM, $40{\pm}6kg$ daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double $4{\times}4$ Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of milk.

A comparison of Echium, fish, palm, soya, and linseed oil supplementation on pork quality

  • Barbara Elizabeth van Wyngaard;Arno Hugo;Phillip Evert Strydom;Foch-Henri de Witt;Carolina Henritta Pohl;Arnold Tapera Kanengoni
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1414-1425
    • /
    • 2023
  • Objective: Long chain n-3 polyunsaturated fatty acids (PUFA) exert positive effects on human health. The long chain n-3 PUFA of pork can be increased by adding fish oil to the diet. Due to the cost and availability of fish oil an alternative source must be found. Methods: This study evaluated the effect of five dietary oils on meat quality, fatty acid composition and lipid stability. The five diets contained 1% palm oil (Control), 1% soya oil, 1% linseed oil, 1% fish oil, and 1% Echium oil, respectively. The trial consisted of 60 gilts, randomly allocated to five groups. Results: All color parameters, extractable fat content, fat free dry matter, and moisture content of the m. longissimus muscle were unaffected by dietary treatment. Consumers and a trained sensory panel could not detect a difference between the control samples and the Echium oil sample during sensory analysis. Samples containing higher levels of PUFA (soya, linseed, fish, and Echium oil) had higher levels of primary and secondary lipid oxidation products after refrigerated and frozen storage. However, these values were still well below the threshold value where off flavors can be detected. The Echium oil treatment had significantly higher levels of long chain PUFA than the linseed oil treatment, but it was still significantly lower than that of the fish oil treatment. Conclusion: Echium oil supplementation did not increase the levels of n-3 to the same extent as fish oil did. The result did however suggest that Echium oil can be used in pig diets to improve muscle long chain n-3 fatty acid content without any adverse effects on meat quality when compared to linseed, soya, and palm oil.

Dietary Manipulation of Lean Tissue Deposition in Broiler Chickens

  • Choct, M.;Naylor, A.J.;Oddy, V.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.692-698
    • /
    • 2005
  • Two experiments were conducted to examine the effect of graded levels of dietary chromium and leucine, and different fat sources on performance and body composition of broiler chickens. The results showed that chromium picolinate at 0.5 ppm significantly (p<0.05) lowered the carcass fat level. Gut weight and carcass water content were increased as a result of chromium treatment. Body weight, plucked weight, carcass weight, abdominal fat pad weight, breast yield and feed efficiency were unaffected by chromium treatment. Leucine did not interact with chromium to effect lean growth. Dietary leucine above the recommended maintenance level (1.2% of diet) markedly (p<0.001) reduced the breast muscle yield. The addition of fish oil to broiler diets reduced (p<0.05) the abdominal fat pad weights compared to birds on linseed diets. Fish oil is believed to improve lean growth through the effects of long chain polyunsaturated fatty acids in lowering the very low-density lipoprotein levels and triglyceride in the blood, in the meantime increasing glucose uptake into the muscle tissue in blood and by minimizing the negative impact of the immune system on protein breakdown. The amount of fat in the diet (2% or 4%) did not affect body composition.