Browse > Article
http://dx.doi.org/10.5713/ajas.2009.90104

Evaluation of Soybean Oil as a Lipid Source for Pig Diets  

Park, S.W. (Department of Animal Science, Chung-Ang University)
Seo, S.H. (Cargill Agri Purina, Inc.)
Chang, M.B. (Department of Animal Science, Chung-Ang University)
Shin, I.S. (American Soybean Association-International Marketing)
Paik, InKee (Department of Animal Science, Chung-Ang University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.9, 2009 , pp. 1311-1319 More about this Journal
Abstract
An experiment was conducted to determine the effects of soybean oil supplementation replacing tallow in pig diets at different stages of growth. One hundred and twenty crossbred (Landrace${\times}$Yorkshire${\times}$Duroc) pigs weighing 18 kg on average were selected. Pigs were randomly allotted to 12 pens of 10 pigs (5 pigs of each sex) each. Three pens were assigned to each of the four treatments: TA; tallow diet, TA-SO-80; switched from tallow to soybean oil diet at 80 kg average body weight, TA-SO-45; switched from tallow to soybean oil diet at 45 kg average body weight, and SO; soybean oil diet. Treatment SO was significantly lower in ADG than tallow diets (TA, TA-SO-80 and TA-SO-45) during the grower period (18 to 45 kg). However, treatment SO showed greatest compensation in ADFI and ADG during the finisher-2 period (after 80 kg body weight). ADFI and ADG and Gain/Feed for the total period were not significantly different among treatments. Loin area, back fat thickness, firmness and melting point of back fat were not significantly different. The levels of total cholesterol and low density lipoprotein+very low density lipoprotein cholesterol in serum were significantly lower in treatment SO than in treatments TA-SO-45, TA-SO-80 and TA. The level of serum triglyceride linearly increased as the length of the tallow feeding period increased. Serum immunoglobulin-G (IgG) level was significantly higher in the soybean oiltreatment than in other treatments. Major fatty acid composition of short rib muscle and back fat were significantly influenced by treatments. Contents of ${\alpha}$-linolenic acid (C18:3) and docosahexaenoic acid (DHA, C22:6) linearly increased as the soybean oil feeding period increased. In conclusion, soybean oil can be supplemented to the diet of pigs without significant effects on growth performance and carcass characteristics. The level of polyunsaturated fatty acids (PUFA), especially $\omega-3$ fatty acids in the carcass was increased by soybean oil supplementation.
Keywords
Cholesterol; Pig; Soybean Oil; Tallow; $\omega-3$ Fatty Acid;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Azain, M. J. 2004. Role of fatty acids in adipocyte growth and development. J. Anim. Sci. 82:916-924   PUBMED
2 Howard, K. A., D. M. Forsyth and T. R. Cline. 1990. The effect of an adaption period to soybean oil additions in the diets of young pigs. J. Anim. Sci. 68:678-683   PUBMED
3 Klingenberg, I. L., D. A. Knabe and S. B. Smith. 1995. Lipid metabolism in pigs fed beef tallow or high-oleic acid sunflower oil. Comp. Biochem. Physiol. 110B:183-192 (Abstr.)   DOI   ScienceOn
4 NRC. 1998. Nutrient requirements of swine. $10^{th}$ Rev. Ed., National Research Council, Washington DC, USA
5 Park, S. W., S. H. Seo, H. Namkung, I. K. Paik and I. S. Shin. 2001. Effect of soybean oil supplementation on the performance of weanling pigs. Korean J. Anim. Sci. 43:485-496
6 Renner, R. and F. W. Hill. 1961. Factors affecting the absorbability of saturated fatty acids in the chick. J. Nutr. 74:254-258   DOI   ScienceOn
7 Thiel-Cooper, R. L., F. C. Parrish Jr. J. C. Sparks, B. R. Wiegand and R. C. Ewan. 2001. Conjugated linoleic acid changes swine performance and carcass composition. J. Anim. Sci. 70:1821-1828
8 Tukey, J. W. 1953. The problem of multiple comparisons. Princeton University , Princeton, NJ
9 AOCS. 1967. Official methods of analysis. American Oil Chemists' Society, Chicago
10 Gatlin, A. L., M. T. See, J. A. Hansen, D. Sutton and J. Odle. 2002. The effects of dietary fat sources, levels, and feeding intervals on pork fatty acid composition. J. Anim. Sci. 80:1606-1615   PUBMED
11 Ensminger, M. E., J. E. Oldfield and W. W. Heinemann. 1990. Feeds and Nutrition. $2^{nd}$. The Ensminger Publishing Company, Clovis, CA. USA
12 Leskanich, C. O., K. R. Matthews, C. C. Warkup, R. C. Noble and M. Hazzledine. 1997. The effect of dietary oil containing (n-3) fatty acids on the fatty acid, physicochemical, and organoleptic characteristics of pig meat and fat. J. Anim. Sci. 75:673-683   PUBMED
13 Theodore, J. W. 1980. Commercial oil source. In: Food oils and their uses. The AVI Publishing Co. Inc. pp. 26-46
14 Lepage, G. and C. C. Roy. 1986. Direct transesterification of all classes of lipid in a one/step reaction. J. Lipid Res. 27:114
15 Romans, J. R., R. C. Johnson, D. M. Wolf, G. W. Libal and W. J. Costello. 1995. Effects of ground flaxseed in swine diets on pig performance and physical and sensory characteristics and omega-3 fatty acid content of pork: I. Dietary level of flaxseed. J. Anim. Sci. 73:1982-1986   PUBMED
16 SAS Institute. 1996. SAS/STAT user's guide release 6.12 edition. SAS Institute Inc., Cary, North Carolina
17 Cera, K. R., D. C. Mahan and G. A. Reinhart. 1990. Evaluation of various extracted vegetable oils, roasted soybeans, mediumchain triglyceride and an animal-vegetable fat blend for postweaning swine. J. Anim. Sci. 68:2756-2765   PUBMED
18 Enser, M. 1984. The chemistry, biochemistry and nutritional importance of animal fats. In: Fats in animal nutrition (Ed. J. Wise). Butterworths pp. 23-51
19 Van Oeckel, M. J., M. Casteels, N. Warnants, L. Van Damme and Ch. V. Boucque. 1996. Omega-3 fatty acids in pig nutrition: implications for the intrinsic and sensory quality of the meat. Meat Sci. 44:55-63   DOI   ScienceOn
20 Hartman, A. D., W. J. Costello, G. W. Libal and R. C. Wahlstrom. 1985. Effect of sunflower seeds on performance, carcass quality, fatty acids and acceptability of pork. J. Anim. Sci. 60:212-219
21 Bee, G., S. Geber and R. Messikommer. 2002. Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissue and lipogenesis in the pig. J. Anim. Sci. 80:1564-1574   PUBMED
22 Frenadez, M. L. and D. J. McNamara. 1991. Regulation of cholesterol and lipoprotein metabolism in guinea pigs mediated by dietary fat quality and quantity. J. Nutr. 121:934-943
23 Stubbs, C. D. and A. D. Smith. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochem. Biophys. Acta 779:89-137   DOI   PUBMED   ScienceOn
24 Wahlstrom, R. C., G. W. Libal and R. J. Berns. 1971. Effect of cooked soybean on performance, fatty acid composition and pork carcass characteristics. J. Anim. Sci. 32:891-894   PUBMED
25 Sanderson, P., Y. E. Finnegan, C. M. Willams, P. C. Calder, G. C.Burdge, S. A. Wooton, B. A. Grifin, D. J. Millward, N. C. Pegge and W. J. E. Bemelmans. 2002. UK Food Standards Agency $\alpha$-linolenic acid workshop report. Br. J. Nutr. 88:573-579   DOI   ScienceOn
26 Kouba, M., M. Enser, F. M. Whittington, G. R. Nute and J. D. Wood. 2003. Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 81:1967-1979   PUBMED
27 In: 2nd Ed. Principles and Procedures of Statistics. A Biometrical Approach. R. G. D. Steel and J. H. Torrie. 1980. McGraw-Hill Book Co. pp. 185-186
28 Turlington, H. 1988. The effect of protein, carbohydrate and fat source on nutrient digestibility of the early weaned pig. Ph.D. Thesis. Kansas State Univ., Manhattan
29 Kendall, P. T. 1984. The use of fat in dog and cat diets. In: Fats in animal nutrition (Ed. J. Wiseman). Butterworths pp. 397-398
30 Perez, Rigau, A., M. D. Linderman, E. T. Kornegay, A. F. Harper and B. A. Watkins. 1995. Role of dietary lipids on fetal tissue fatty acid composition and fetal survival in swine at 42 days of gestation. J. Anim. Sci. 73:1372-1380   PUBMED
31 Conquer, J. A. and B. J. Houlb. 1998. Effect of supplementation with different doses of DHA on the level of circulating DHA as nonesterified fatty acid in subjects of Asian Indian background. J. Lipid Res. 39:286-292
32 Sprecher, H. 1981. Biochemistry of essential fatty acids. Progress in Lipid Research. 20:13-22   DOI   PUBMED   ScienceOn
33 Mancini, G., A. O. Carbonara and J. F. Heremans. 1965. Immunochemical quantitation of antigens by single radical immunodiffusion. Immunochemistry 2:235-254   DOI   ScienceOn
34 Alessandri, H. M., B. Goustard, P. Guesnet and A. Durand. 1998. Docosahexaenoic acid concentrations in retinal phospholipids of piglets fed an infant formula enriched with long-chain polyunsaturated fatty acid: effect of egg phospholipids and fish oil with different ratios of eicosapentaenoic acid to docosahexaenoic acid. Am. J. Clin. Nutr. 67:377-385
35 Coffey, M. T., R. W. Funderburke and H. C. McCampbell. 1982. Effect of heat increment and level of dietary energy and environmental temperature on the performance of growingfinishing swine. J. Anim. Sci. 54:95-105   PUBMED
36 Irie, M. and M. Sakimoto. 1992. Fat characteristics of pigs fed fish oil containing eicosapentaenoic and docosahexaenoic acids. J. Anim. Sci. 70:470-477   PUBMED
37 Harris, W. S., W. E. Conner, S. B. Inkeles and D. R. Illingworth. 1984. Dietary $\omega$-3 fatty acids prevent carbohydrate induced hypertriglyceridemia. Metabolism 33:1016-1019   DOI   ScienceOn
38 Harris, W. S. 1997. n-3 Fatty acids and serum lipoproteins: human studies. Am. J. Clin. Nutr. 65:1645-1654
39 Cera, K. R., D. C. Mahan and G. A. Reinhart. 1989. Apparent fat digestibilities and performance responses of postweaning swine fed diets supplemented with coconut oil, corn oil or tallow. J. Anim. Sci. 67:2040-2047
40 Lands, W. E. M. 1986. Immune response. In: Fish and human health. New York: Academic Press. pp. 63-82
41 Skelley, G. C., R. F. Borgman, D. L. Handlin, J. C. Acton, J. C. Mc Connel, F. B. Wardlaw and E. J. Evans. 1975. Influence of diet on quality, fatty acids and acceptability of pork. J. Anim. Sci. 41:1298-1304
42 Harbige, L. S. 1998. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc. Nutr. Soc. 57:555-562   DOI
43 Morgan, J. B., G. C. Smith, J. Cannon, F. Mckeith and J. Heavner. 1994. Pork distribution channel audit report. In: Pork chain quality audit-progress report (Ed. D. Meeker and S. Sonka). National Pork Producers Council, Des Moines, IA
44 Scollan, N. D., N. J. Choi, E. Kurt, A. V. Fisher, M. Enser and J. D. Wood. 2001. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 85:115-124   DOI   ScienceOn