• Title/Summary/Keyword: animal fat/oil

Search Result 275, Processing Time 0.026 seconds

Growth Performance of Lambs Fed Diet Supplemented with Rice Bran Oil as Such or as Calcium Soap

  • Bhatt, R.S.;Karim, S.A.;Sahoo, A.;Shinde, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.812-819
    • /
    • 2013
  • Forty two Malpura lambs (21 d old) were divided into three groups of 14 each consisting of 8 females and 6 males. Lambs were allowed to suckle their respective dams twice daily up to weaning (13 wks) and offered free choice concentrate and roughage in a cafeteria system. The lambs in control group were fed conventional concentrate mixture, in RBO group concentrate mixture fortified with 4% industrial grade rice bran oil and in Ca-soap rice bran oil (as in RBO group) was supplemented in the form of calcium soap. The concentrate intake decreased($p{\leq}0.05$) in RBO group as a result total dry matter, crude protein and metabolizable energy intake decreased compared to control whereas Ca-soap prepared from the same rice bran oil stimulated the concentrate intake leading to higher total dry matter, crude protein and energy intakes. The digestibility of dry matter ($p{\leq}0.05$), organic matter ($p{\leq}0.05$) and crude protein ($p{\leq}0.05$) was higher in RBO group followed by Ca-soap and control whereas no effect was observed for ether extract digestibility. Higher cholesterol ($p{\leq}0.05$) content was recorded in serum of oil supplemented groups (RBO and Ca-soap) while no effect was recorded for other blood parameters. Rice bran oil as such adversely affected and reduced the body weight gain ($p{\leq}0.001$) of lambs in comparison to control whereas the Ca-soap of rice bran oil improved body weight gain and feed conversion efficiency in lambs. Fat supplementation decreased total volatile fatty acids ($p{\leq}0.05$) and individual volatile fatty acid concentration which increased at 4 h post feeding. Fat supplementation also reduced ($p{\leq}0.05$) total protozoa count. Ca-soap of rice bran oil improved pre slaughter weight ($p{\leq}0.05$) and hot carcass weight ($p{\leq}0.05$). It is concluded from the study that rice bran oil in the form of calcium soap at 40 g/kg of concentrate improved growth, feed conversion efficiency and carcass quality as compared to rice bran oil as such and control groups.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Effects of Moist Extruded Full-fat Soybeans on Gut Morphology and Mucosal Cell Turnover Time of Weanling Pigs

  • Qiao, Shiyan;Li, Defa;Jiang, Jianyang;Zhou, Hongjie;Li, Jingsu;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • Ten barrows, weaned at 28 days (7.2$\pm$0.1 kg BW), were used to evaluate the effects of feeding extruded full-fat soybeans on intestinal morphology and mucosal cell turnover time. All pigs were fed corn-based diets with half of the pigs receiving diets supplemented with 15.5% soybean meal and 3% soybean oil and the remaining pigs fed a diet in which the soybean meal and oil were replaced by 18.5% extruded full-fat soybeans. The pigs were individually placed in $80{\times}150cm$ metabolic cages and fed twice daily an amount approximately equal to their ad libitum intake for a period of 14 days. On day 14, pigs were weighed and then injected intraperitoneally with $^3$H]thymidine ($100{\mu}Ci/kg$ of BW, specific activity 20 Ci/mmol) 6 h after the morning meal. A pig from each treatment was killed 1, 4, 8, 16, or 24 h postinjection and intestinal tissues were collected. Daily gains for pigs fed the soybean diet and extruded full-fat soybean diet were 0.24 and 0.31 kg/day (p=0.05) with feed conversions of 1.58 and 1.39 (p=0.05), respectively. In comparison with pigs fed soybean meal, pigs fed moist extruded full-fat soybeans had a decreased crypt depth in their duodenum and cecum (p<0.1), while the villus height in the mid jejunum and ileum and the total height (villus height plus crypt depth) of the ileum and mid jejunum increased (p<0.05). The villus width in the duodenum and mid jejunum decreased (p<0.05). The number of crypt epithelial cells in the upper jejunum increased but decreased in the ileum, colon and cecum (p<0.05). The number of villus epithelial cells in the ileum and the upper and mid jejunum increased (p<0.05). The time for migration of epithelial cells in the crypt-villus column decreased (p<0.05) in all sites except the upper jejunum, ileum and cecum. The mucosal turnover rate for all intestinal sites except the upper jejunum, colon and cecum decreased (p<0.05). From these data, we conclude that inclusion of moist extruded full-fat soybeans in weanling pig diets can improve the intestinal morphology and slow the migration rate and turnover time of epithelial cells of the small intestine, especially in the mid jejunum compared with soybean meal.

Effect of Green Coffee Bean Extract Supplementation on Body Fat Reduction in Mildly Obese Women (경도비만 여성에서 생커피두 엑기스의 섭취에 의한 체지방 감소 효과)

  • Kim, Tae-Su;Yang, Woong-Suk;Park, So-I;Lee, Sung-Pyo;Kang, Myung-Hwa;Lee, Jae-Hwan;Park, Il-Bum;Park, Hyun-Jun;Murai, Hiromichi;Okada, Tadashi
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.4
    • /
    • pp.407-413
    • /
    • 2012
  • In previous studies, we performed joint animal studies and clinical trials between Yonsei University and Oryza Oil & Fat Chemical Co. Ltd. We have shown that coffee bean extract has potent anti-obesity and hypotriglyceridemic activities as well as beneficial effects on body fat reduction.In this study, the effects of coffee bean extract (100 mg/capsule) on body fat reduction were evaluated in overweight/obese women (body mass index of 25~30 $kg/m^2$ or body fat > 30%) not diagnosed with any type of disease. Subjects were randomly assigned to a coffee bean extract group (n=10) or placebo group (n=10). We measured anthropometric parameters, abdominal fat distribution by computed tomography and blood components before and after the 8week intervention period. After supplementation, the coffee bean extract group showed body weight (p=0.08), body mass index (p=0.06), hip circumference (p<0.05), and upper waist circumference (p< 0.01). In addition, after 8 weeks, the coffee bean extract group showed a significant decrease in abdominal internal fat area compared to 0 weeks (0 weeks : $155.8cm^2$; 8 weeks : $145.9cm^2$, ${\Delta}$ change : $-9.9cm^2$, respectively). However, there were no significant differences in lipid profiles or serological measurements between the coffee bean extract group and placebo group. The results of our human study demonstrated that coffee bean extract supplementation for 8 weeks has beneficial effects on reducing abdominal internal fat area as well as hip and waist circumferences.

Oleic acid in Angus and Hanwoo (Korean native cattle) fat reduced the fatty acid synthase activity in rat adipose tissues

  • Nogoy, Kim Margarette C.;Kim, Hyoun Ju;Lee, Dong Hoon;Smith, Stephen B.;Seong, Hyun A;Choi, Seong Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.380-393
    • /
    • 2021
  • This study aimed to determine the blood lipid profiles, fatty acid composition, and lipogenic enzyme activities in rat adipose tissues as affected by the Angus beef fat (ABF) and Hanwoo beef fat (HBF) containing high oleic acid (OA) content. We assigned 60 Sprague Dawley rats with a mean bodyweight of 249 ± 3.04 g to three groups (n = 20 each) to receive diets containing 7% coconut oil (CON), 7% ABF, or 7% HBF. The OA content was highest in the HBF (45.23%) followed by ABF (39.51%) and CON (6.10%). The final body weight of the HBF-fed group was significantly increased, probably due to increased feed intake, indicating the palatability of the diet. The HBF and ABF significantly increased high-density lipoprotein cholesterol (HDL-C), decreased triglyceride (TG) and total cholesterol (TC) levels, and also tended to attenuate glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in the bloodstream of the rats compared to CON. As compared to CON, lauric, myristic, and palmitic acids were significantly lower, and those of OA and α-linolenic acid (ALA) were significantly higher in the adipose tissues of HBF and ABF-fed groups. The HBF and ABF also reduced lipogenesis as induced by depleted fatty acid synthase (FAS) activity in rat adipose tissues. Nevertheless, between the two fats, HBF showed high feed intake due to its high palatability but reduced lipogenic enzyme activity, specifically that of FAS, and increased HDL-C, decreased TC and TG levels in the bloodstream, reduced saturated fatty acids (SFA), and increased oleic and ALA contents in rat adipose tissues indicating that HBF consumption does not pose significant risks of cardiovascular disease.

The Effects of Various Fat Source Feeding on Growth Performance, Carcass Characteristics, Fecal Microflora and Blood Profiles in Broilers (다양한 지방원의 급여가 육계의 생산성, 도체특성, 분내 미생물 조성 및 혈액특성에 미치는 영향)

  • Cho, J.H.;Kwak, Y.C.;Lee, J.H.;Nho, W.G.;Kim, I.H
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.93-103
    • /
    • 2014
  • This experiment was conducted to investigate the effects of different fat source feeding on growth performance, visceral organ weight, meat color, excreta microflora and blood profiles in broilers. A total of 768 1-d-old ROSS 308 broilers (mixed gender) with an initial average body weight of 39.68 ± 0.14 g were randomly allotted to 4 treatments with 12 replicate pens per treatment and 16 broilers per pen for 32 days. Dietary treatments were: 1) SBO, basal diet + 5% soybean oil, 2) PF, basal diet + 5% poultry fat, 3) TAL, basal diet + 5% tallow, and 4) LARD, basal diet + 5% lard. During d 1 to 14, broilers fed TAL diet had a higher (P<0.05) body weight gain (BWG) than broilers fed with PF and LARD diets, moreover, broilers fed TAL diet had a higher (P<0.05) feed intake than broilers fed SBO, PF and LARD diets. Overall (d 0-32), BWG in SBO and TAL treatments was greater (P<0.05) than that in LARD treatment. The meat color a* (redness) of broilers fed with LARD diet was increased (P<0.05) compared with broilers fed with PF and TAL diets. No difference was observed in visceral organ weight of liver, spleen, bursa of Fabricius, breast muscle, abdominal fat, gizzard and excreta concentrations of Lactobacillus and Escherichia coli. The blood LDL cholesterol concentration in TAL treatment was higher (P<0.05) than that in LARD treatment. In conclusion, broilers supplementation with tallow could improve not only the body weight gain and feed intake but also blood LDL cholesterol concentration. Moreover, broiler fed lard could increase a* (radness) of meat color, while the soybean oil supplementation improve body weight gain in broilers.

Principles of Physiology of Lipid Digestion

  • Bauer, E.;Jakob, S.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.282-295
    • /
    • 2005
  • The processing of dietary lipids can be distinguished in several sequential steps, including their emulsification, hydrolysis and micellization, before they are absorbed by the enterocytes. Emulsification of lipids starts in the stomach and is mediated by physical forces and favoured by the partial lipolysis of the dietary lipids due to the activity of gastric lipase. The process of lipid digestion continues in the duodenum where pancreatic triacylglycerol lipase (PTL) releases 50 to 70% of dietary fatty acids. Bile salts at low concentrations stimulate PTL activity, but higher concentrations inhibit PTL activity. Pancreatic triacylglycerol lipase activity is regulated by colipase, that interacts with bile salts and PTL and can release bile salt mediated PTL inhibition. Without colipase, PTL is unable to hydrolyse fatty acids from dietary triacylglycerols, resulting in fat malabsorption with severe consequences on bioavailability of dietary lipids and fat-soluble vitamins. Furthermore, carboxyl ester lipase, a pancreatic enzyme that is bile salt-stimulated and displays wide substrate reactivities, is involved in lipid digestion. The products of lipolysis are removed from the water-oil interface by incorporation into mixed micelles that are formed spontaneously by the interaction of bile salts. Monoacylglycerols and phospholipids enhance the ability of bile salts to form mixed micelles. Formation of mixed micelles is necessary to move the non-polar lipids across the unstirred water layer adjacent to the mucosal cells, thereby facilitating absorption.

Effect of Dietary Fat Sources and L-arginine Supplementation on Endothelial function and Lipid Metabolism in Streptozotocin-Induced Diabetic Rats (식이지방의 종류와 L-arginine 보충이 당뇨쥐의 ENdothelium 기능 및 체내 지질대사에 미치는 영향)

  • 장문정;김연중;김명환
    • Journal of Nutrition and Health
    • /
    • v.35 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Alteration in the syntesis or enhanced inactivation of nitric oxide(NO) can induce impairment of endothelial cell function. Insulin dependent diabetes mellitus(IDDM) is characterized by impaired endothelial function and vascular disease. NO is produced through L-arginine pathway To elucidate the hypothesis that the decreased production on NO in IDDM reflects vascular damage and the NO production can be manipulated by either dietary fat(7% of kg diet) or the oral supplementation with L-arginine(2g/kg bw), plasma markers for vascular endothelial damage and plasma lipid profiles were measured in streptozotocin(STZ)-induced diabetic rats. Diabetic or normal Sprague-Dawley rats were fed 6 different experimental diets for 4 weeks(SO : soybean oil, SOA: soybean oil + L-arginine supplementation, BT : beef tallow, BTA_ beef tallow + L-arginine supplementation, OV olive oil, OVA : olive oil + L-arginine supplementation). Plasma glucose, total cholesterel, HDL-cholesterol, LDL-cholesterol and triglyceride were measured. Endothelial markers, plasma von Willebrand factor(vWf), thromboxane B$_2$, and 6-keto PGF1$\alpha$ of aorta were measured by ELISA. Plasma NO production was evaluated through the measurement of nitrite by EIA. Feeding saturated fatty acid(SFA, BT) increased relative liver size(RLS) in diabetic rats compared to either polyunsatunted fatty acid(PUFA, SO) or monounsaturated fatty acid(MUFA, OV) The supplementation of L-arginine inhibited the liver and kidney enlargement in olive oil find diabetic rats. Plasma glucose was lower in diabetic animal find the olive oil compared to fed beef tallow and the supplementation L-arginine decreased it in diabetic rats find beef tallow significantly(p < 0.05). Plasma TXB$_2$ levels were increased due to diabetes and the value of beef tallow group showed highest value. Plasma vWf concentration of beef tallow group was higher value in normal rats and was elevated more in diabetes. In diabetic groups, the vWf concentration of olive oil group was lower than beef tallow or soybean oil group. The supplementation of L-arginine in diabetic rats decreased plasma TXB$_2$ and vWf levels significantly(p < 0.05). NO production was higher in normal olive oil fed rats and was tend to be decreased in diabetic rats and the supplementation of L-arginine recovered to normal value(p < 0.05), Olive oil supplemented with L-arginine tended to lower plasma total cholesterol and LDL-cholesterol after 4 week treatment. These results suggest that generalized vascular endothelial changes based on plasma TXB$_2$and vWf occurs in diabetic rats. and olive oil with L-arginine supplementation contributes to a better control of the hyperglycemia, endothelial changes and hypercholesterolemia accompanying diabetes as compared with beef tallow or soy bean oil in this rat model.

Effect of choline chloride supplementation on milk production and milk composition of Etawah grade goats

  • Supriyati, Supriyati;Budiarsana, I. Gusti Made;Praharani, Lisa;Krisnan, Rantan;Sutama, I. Ktut
    • Journal of Animal Science and Technology
    • /
    • v.58 no.8
    • /
    • pp.30.1-30.12
    • /
    • 2016
  • Background: The effect of choline chloride supplementation through forced drinking combined with concentrate diets containing Ca-fish oil on milk production and milk composition of Etawah Grade goats was evaluated. Choline chloride is an essential component in ruminant diets as it is required for fat metabolism. Method: The experiment was conducted in a completely randomized block design with three types of treatments and eight replications. The trial had two successive experimental periods; the first, during the eight weeks of late pregnancy, and the second, during the first 12 weeks of lactation. Twenty-four Etawah Grade does in the second gestation period were divided into three treatment groups. Commercial choline chloride 60 % in corncobs-based powder was used as a source of choline chloride. The treatments were no supplementation (control) and supplemented with either 4 g or 8 g/2days of choline chloride. Choline chloride was given to the animals through a forced drinking technique, after dissolving it in 60 ml drinking water. The initial body weight of does was $38.81{\pm}3.66kg$. The does were penned individually, and were given fresh chopped King Grass ad libitum and 700 g/day of concentrate diets containing Ca-fish oil, starting eight weeks prior to expecting kidding and continuing for 12 weeks of parturition. Results: All nutrient intakes were not significantly different (p > 0.05) among the treatments during the late pregnancy and the lactation periods. Supplementation did not affect (p > 0.05) the average daily gains and feed conversion ratio during pregnancy but gave effects (p < 0.05) on the average daily gains, feed conversion ratio and income over feed cost during lactation. The highest average daily milk yields and 4 % fat corrected milk yields were found in goats supplemented with 4 g/2days of choline chloride and increased by 17.00 % and 24.67 %, respectively, compared to the control. Moreover, milk composition percentage and milk constituent yields improved significantly (p < 0.05) in those supplemented with 4 g/2days of choline chloride. Conclusion: The supplementation of 4 g/2days of choline chloride through forced drinking increased milk yields, the 4 % fat corrected milk yields, milk composition, milk constituent yields, and improved feed conversion ratio and income over feed cost of Etawah Grade goats.

Effects of Dietary Fish Oil on the Contents of Eicosapentaenoic Acid and Docosahexaenoic Acid and Sensory Evaluation of the Breast Meat in Mule Ducks

  • Huang, J.F.;Huang, Chia-Chemg;Lai, M.K.;Lin, J.H.;Lee, C.H.;Wang, T.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.231-235
    • /
    • 2006
  • The objectives of this study were to investigate the effects of dietary fish oil inclusion on the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents and organoleptic characteristics of breast meat in mule ducks. Three hundred mule ducks at four weeks of age were randomly assigned to three dietary treatments with five replicate pens in each. One replicate pen had ten males and females each with a total of 100 ducks in each treatment. The diet in the three treatments contained 0, 1.5, and 3.0% fish oil, respectively. Body weights at 4, 6, 8, and 10 weeks of age, and feed efficiency at 4 to 6, 6 to 8, and 8 to 10 weeks of age were recorded. At 10 weeks of age, one male and one female from each replicate were sacrificed for oxidative stability of breast meat and the sacrificed males were employed for the analysis of fatty acids in breast meat and skin. Sensory evaluation of breast meat was also performed. A level of 3.0% fish oil in the diet significantly deteriorated feed efficiency and body weight gain. Dietary fish oil inclusion had a trend of increasing abdominal fat deposition and decreasing the flavor of breast meat. The EPA and DHA contents in the breast meat were higher than those in the breast skin irrespective of oil sources. The EPA and DHA contents in breast meat and breast skin was significantly increased in the 3.0% fish oil group. Although EPA and DHA were not efficiently deposited in the duck meat through dietary fish oil inclusion, this method can still provide a partial supplementation of EPA and DHA.