• 제목/요약/키워드: anhydrous gypsum

검색결과 17건 처리시간 0.018초

석고종류 및 소각장애시 치환율 변화에 따른 고로슬래그 미분말 활용 무시멘트 모르타르의 공학적 특성 (Engineering Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum)

  • 박준희;황금광;김준호;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.222-223
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar.The replacement ratio of dihydrate gypsum and anhydrite gypsum was fixed as 0 and 10%, the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 10% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

무수석고와 소각장애시의 치환율 변화에 따른 고로슬래그 미분말 활용 무 시멘트 모르타르의 기초적특성 (Fundamental Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum)

  • 여량량;김준호;백병훈;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.242-243
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar. The replacement ratio of anhydrite gypsum was fixed as 0, 10%, 20% the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 20% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

排煙脫黃石膏로부터 無水石膏 製造 및 適用 特性 (Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum)

  • 현종영;정수복;채영배;김병수
    • 자원리싸이클링
    • /
    • 제14권2호
    • /
    • pp.10-18
    • /
    • 2005
  • 화력발전소의 배연탈황공정에서 발생된 탈황석고의 용도확대 및 천연 무수석고의 대체 가능성을 조사하기 위하여 탈황석고로부터 건식 열처리법에 의한 무수석고의 제조특성 및 탈황 무수석고에 대하여 시멘트 및 콘크리트 2차 제품으로의 적용 특성을 조사하였다. 탈황석고로부터 Ⅱ형 무수석고의 상전이는 700$^{\circ}C$ 부근에서 완전히 종료되었고, 이러한 Ⅱ형 무수석고의 상전이 과정에서 입자크기의 변화 등을 확인할 수 있었다. 천연 무수석고와 탈황 이수석고로부터 제조된 무수석고는 화학성분 조성, 입자크기, 열적특성 등의 물성이 유사하였다. 무수석고를 시멘트나 콘크리트 2차 제품에 적용시킬 때 부식문제를 발생시킬 수 있는 황산기(SO$_4^{2-}$)의 용출실험 결과, 700$^{\circ}C$에서 1시간 열처리로 제조된 탈황 무수석고는 천연 무수석고에 비하여 황산기의 용출량이 약 50 wt.% 감소됨을 확인할 수 있었고, 소석회(Ca(OH)$_2$) 3 wt.%의 첨가에 의해 황산기의 용출량이 천연 무수석고에 비하여 약 70 wt.% 감소시킬 수 있었다. 탈황 무수석고를 시멘트 및 콘크리트 2차 제품에 적용시킨 결과, 압축강도 등의 물성이 천연무수석고에 비하여 동등 또는 우수함을 확인할 수 있었다.

Self-Cementitious Hydration of Circulating Fluidized Bed Combustion Fly Ash

  • Lee, Seung-Heun;Kim, Guen-Su
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.128-136
    • /
    • 2017
  • Fly ash from a circulating fluidized bed combustion boiler (CFBC fly ash) is very different in mineralogical composition, chemical composition, and morphology from coal ash from traditional pulverized fuel firing because of many differences in their combustion processes. The main minerals of CFBC fly ash are lime and anhydrous gypsum; however, due to the fuel type, the strength development of CFBC fly ash is affected by minor components of active $SiO_2$ and $Al_2O_3$. The initial hydration product of the circulating fluidized bed combustion fly ash (B CFBC ash) using petro coke as a fuel is Portlandite which becomes gypsum after 7 days. Due to the structural features of the portlandite and gypsum, the self-cementitious strength of B CFBC ash was low. While the hydration products of the circulating fluidized bed combustion fly ash (A CFBC ash) using bituminous coal as a fuel were initially portlandite and ettringite, after 7 days the hydration products were gypsum and C-S-H. Due to the structural features of ettringite and C-S-H, A CFBC ash showed a certain degree of self-cementitious strength.

소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향 (Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate)

  • 한민철;한동엽;어량량
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.161-167
    • /
    • 2015
  • 최근, 전 세계적으로는 지구온난화 등 환경문제의 심각성을 인식하여 이산화탄소의 배출량을 줄이는 노력을 경주하고 있다. 이와 관련하여 선행 연구에서는 산업부산물인 RA의 알칼리로 BS의 잠재 수경성 반응을 자극시켜, 무시멘트 조건에서 알칼리 활성(Alkali activation)화 시키는 새로운 메커니즘으로 강도 발현성을 확인 바 있다. 본 연구는 제조과정에 따른 석고의 종류 및 소각장에서 발생한 WA 등을 자극제 용도로 추가하여 강도등 품질에 미치는 영향에 대해 검토를 진행하였다. 그 결과, BS에 RA를 사용하는 무 시멘트 모르타르에 WA 0.5%와 AG 20%를 사용할 경우 초기강도는 낮을 지라도 91일강도는 OPC강도이상으로 발휘 되어 양호한 결과를 얻을 수 있었다.

슬래그시멘트 초기강도 증진을 위한 자극제로서 CFBC Fly ash의 활용연구 (Application on the CFBC Fly Ash as a Stimulant to Improve the Early Strength of Hydration Portland Cement)

  • 박종탁;오홍섭;정권수;강창호
    • 한국건설순환자원학회논문집
    • /
    • 제8권1호
    • /
    • pp.8-16
    • /
    • 2020
  • 환경오염 저감을 위해 순환유동층 보일러를 활용한 발전이 증가함에 따라 CFBC 플라이애시가 많이 생산되고 있다. CFBC 플라이애시내는 수화반응 중 시멘트의 팽창과 급격한 초기응결을 발생시킬 수 있는 free CaO를 포함하고 있기 때문에 콘크리트에서의 사용이 제한적이다. 본 연구에서는 고로슬래그시멘트의 초기강도 증진을 위해 CFBC 플라이애시와 인산석고와 같이 혼합함으로서 천연석고를 대체하는 자극제로 활용하고자 하기 위하여 미세구조와 초기강도 특성을 실험적으로 분석하였다. 인산석고는 배면탈황석고와 인산중화석고를 사용하였으며, 이수상태와 무수상태로 각각 혼합하여 실험하였다. 실험결과 CFFA와 dihydrate 형태의 이수석고를 혼합하는 경우에는 상대적으로 초기강도 발현이 낮아지나, CFFA와 anhydriteII 결정형태인 무수인산석고를 혼합한 배합의 강도 증진효과가 천연석고를 사용한 경우와 유사하여 혼합시멘트로 활용 가능성이 높은 것으로 분석되었다.

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

해상풍력 발전기용 초고강도 그라우트 개발을 위한 기초적 연구 (Basic Study on Development of Ultra-high Strength Grout for Offshore Wind Turbines)

  • 임명관;하상수
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.155-160
    • /
    • 2015
  • The annual average of energy sources is continuously increasing at a rate of 5.8%, and particularly, the power generation proportion of new/renewable energy is increasing significantly. Furthermore, South Korea has established a national energy master plan for 2008-2030 and is aiming at obtaining approximately 11% of total energy production from the wind turbine sector. Although offshore wind turbines are similar to wind turbines installed on land, they require materials with excellent dynamic properties and durability to prevent damage due to seawater at the lower parts and connecting parts. The lower parts of wind turbines are submerged in seawater, and the upper and lower parts are connected by filling the connecting part with grout. This paper describes the test results of the process of determining the mix ratios to develop ultra-high grout for offshore wind turbines. There is virtually no relevant technology regarding grout for offshore wind turbines in South Korea that can be referenced for the process of determining the mix ratios. Therefore, tests were conducted for determining compression strength, elastic modulus, flexural strength, density, constructability (floor test), and early strength by referencing a high-performance grout produced in South Korea, and the mixing process for achieving the goal strengths was described using the Korean Industrial Standards (KS) as the reference.

고강도 Self-Leveling재의 최적 결합재비 (The Optimum Binder Ratio for High-Strength Self-Leveling Material)

  • 김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.468-473
    • /
    • 2019
  • This study focused on manufacturing an inorganic insulation material set with various amounts of calcium-sulfoaluminate (CSA) (hauyne) content for enhancing both workability (demolding, handling) and the high thermal insulating property. To carry out the experiment, the amounts of CSA utilized were 5%, 10%, 15%, and 20%, with anhydrous gypsum added in equal proportion to produce a stable formation. As the content of CSA increased, a sinking phenomenon occurred because of the hydration reaction from the slurry, so it was difficult to utilize a retarder normally used in the cement manufacturing process. However, an RCOOM surfactant was able to solve the local clumping problem from cement and CSA and obtain a rapid retarding effect, so it was included in this process at 0.3%. Furthermore, the cement fineness was not 7000 ㎠/g but rather 3300 ~ 4000 ㎠/g to prevent a rapid temperature increase in the slurry. The specific gravity of the sample manufactured with 20% CSA was approximately 0.11 g/㎤, and its thermal conductivity was 0.041 W/m·K, providing an excellent insulating property.