• Title/Summary/Keyword: angular position

Search Result 445, Processing Time 0.035 seconds

The Fabrications of Vertical Trench Hall-Effect Device for Non-contact Angular Position Sensing Applications (비 접촉 각도 센서 응용을 위한 수직 Hall 소자의 제작)

  • Park, Byung-Hwee;Jung, Woo-Chul;Nam, Tae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.251-253
    • /
    • 2002
  • We have fabricated a novel Vertical Trench Hall-Effect Device sensitive to the magnetic field parallel to the sensor chip surface for non-contact angular position sensing applications. The Vertical Trench Hall-Effect Device is built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 150 V/AT is measured.

  • PDF

Difference of Proprioceptive Sense at Elbow Joint According to Measurement Methods (팔굽관절에서 측정방법에 따른 고유수용성감각 차이)

  • Lee, Jung-Ah;Kim, Duk-Hwa;Shin, Hwa-Kyung;Choi, Kyu-Hwan;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.63-70
    • /
    • 2003
  • The purpose of this study was to compare the difference of joint position sense between measurements. Fourteen healthy male subjects were recruited for this study. The elbow joint position senses were measured using angle reproduction test. The elbow joint position sense was assessed with three experimental conditions: ipsilateral reproduction test in open-chain condition, contralateral reproduction test in open-chain condition, ipsilateral reproduction test with weight in open-chain condition and ipsilateral reproduction test in closed-chain condition. The angular difference between stimulus position and the reproduced position (angular error) was calculated in all testing conditions to examine the accuracy of the joint position sense. One way ANOVA was used to compare the error angles in all experimental conditions. The error angles between measurements were significantly different in elbow joint. The error angles was smallest in ipsilateral reproduction test with weight in open-chain condition and was greatest in the contralateral reproduction test in open-chain condition. Findings of this study indicate that testing methods, types of task, existence of resistance should be considered in clinical assessment for the joint position sense.

  • PDF

A Position Sensorless Control System of SRM over Wide Speed Range

  • Baik, Won-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2008
  • This paper presents a position sensorless control system of SRM over wide speed range. Due to the doubly salient structure of the SRM, the phase inductance varies along with the rotor position. Most of the sensorless control techniques are based on the fact that the magnetic status of the SRM is a function of the angular rotor position. The rotor position estimation of the SRM is somewhat difficult because of its highly nonlinear magnetizing characteristics. In order to estimate more accurate rotor position over wide speed range, Neural Network is used for this highly nonlinear function approximation. Magnetizing data patterns of the prototype 1-hp SRM are obtained from locked rotor test, and used for the Neural Network training data set. Through measurement of the flux-linkage and phase currents, rotor position is able to estimate from current-flux-rotor position lookup table which is constructed from trained Neural Network. Experimental results for a 1-hp SRM over 16:1 speed range are presented for the verification of the proposed sensorless control algorithm.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

Gravity and Angular Velocity Profile Effects on the Balancing Performance of an Automatic Ball Balancer (자동볼평형장치의 밸런싱 성능에 대한 중력과 속도파형의 영향)

  • 정진태;정두한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.418-423
    • /
    • 2003
  • The balancing performance of an automatic ball balancer (ABB) in the vertical or horizontal position is studied in this paper. Considering the effects of gravity and angular velocity profiles, a physical model for an ABB installed on the Jeffcott rotor is adopted. The non-linear equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-u method. From the computed responses, the effects of gravity and angular velocity profiles on the balancing performance are investigated. It is found that the rotor with ABB can be balanced regardless of the gravity effect. It is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

  • PDF

Angular Self-Sensing Algorithm of Lorentz Force Type Integrated Motor-Bearing System (로렌츠형 자기베어링 내장 전동기의 회전각 추정기)

  • Jeon, Han-Wook;Park, Sung-Ho;Park, Young-Jin;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.852-857
    • /
    • 2004
  • In this paper, an angular self-sensing algorithm is proposed and implemented to a Lorentz force type integrated motor-bearing system. It is based on the principle that the flux linkages of stator windings, calculated from the voltage and torque control current, are the functions of the rotor angle. The tracking angular position error is proven to vanish using the Lyapunov stability method, and the experimental results show that the initial error decays within about 5 seconds. It is found that the resolution of the algorithm remains about 1º over the speed range of 100 to 1000 rpm.

  • PDF

Effects of vertical head rotation on the posteroanterior cephalometric measurements (정모두부방사선사진 촬영시 두부의 수직회전에 따른 투사오차)

  • Koh, Eun-Hee;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.73-84
    • /
    • 2003
  • This study was performed to find out how much projection errors in the cephalometric measurements were made by vertical head rotation in taking posteroanterior cephalograms. 25 adults without any apparent facial asymmetry or severe sagittal skeletal discrepancy were selected and the posteroanterior cephalograms were taken with the head rotated $5^{\circ},\;10^{\circ}$ superior and inferior each to the reference $position(0^{\circ})$. The 7 height, 5 width and 6 angular measurements were taken at each 5 positions. Through the statistical analysis of all measurements taken at each rotated position, folowing results were obtained.1. The projection errors of height measurements were remarkably target than those of width or angular measure nents. f. Among the height measurements, the farther to the rotation axis the measurements were, the larger the projection errors were. 3. Among the width measurements, mandibular width and mandibular width of mandibular first molars showed significant differences between the values taken at each rotated position, while nasal width, maxillary width and intermolar width of maxillary first molars did not. 4. Among the angular measurements, the angle between horizontal reference line and the line that is connected to crista galli and antegonion or maxillare showed significant differences between the values taken at each rotated Position. The above results suggest that it is needed to the effort to keep constant head position for taking the useful posteroanterior cephalogra, because projection errors are caused by vertical head rotation.

The Influence of Midsole Hardness and Sole Thickness of Sport Shoes on Ball Flex Angle with the Increment of Running Velocity (달리기 속도의 증가에 따른 운동화 중저의 경도와 신발바닥의 두께가 신발의 볼 굴곡각도에 미치는 영향)

  • Kwak, Chang-Soo;Mok, Seung-Han;Kwon, Oh-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.153-168
    • /
    • 2005
  • The purposes of this study were to determine the influence of midsole hardness and sole thickness of sports shoes on ball flex angle and position with increment of running velocity. The subjects employed for this study were 10 college students who did not have lower extremity injuries for the last one year and whose running pattern was rearfoot striker of normal foot. The shoes used in this study had 3 different midsole hardness of shore A 40, shore A 50, shore A 60 and 3 different sole thickness of 17cm, 19cm, 21cm. The subjects were asked to run at 3 different speed of 2.0m/sec, 3.5m/sec, 5.0m/sec and their motions were videotaped with 4 S-VHS video cameras and 2 high speed video cameras and simultaneously measured with a force platform. The following results were obtained after analysing and comparing the variables. Minimum angle of each ball flex position were increased with the increment of running velocity and shoe sole thickness(P<0.05), but mid-sole hardness did not affect minimum ball flex angle. The position which minimum angle was shown as smallest was 'D'. Midsole hardness and sole thickness did not affect time to each ball flex minimum angle, total angular displacement of ball flex angle, and total angular displacement of torsion angle(P<0.05). The position which minimum angle was appeared to be earliest was similar at walking velocity, and E and F of midfoot region at running velocity. Total angular displacement of ball flex position tended to increase as shifted to heel. It was found that running velocity had effects on ball flex angle variables, but shoe sole thickness partially affected. It would be considered that running velocity made differences between analysis variables at walking and running when designing shoes. Also, it was regarded that shoes would be developed at separated region, because ball flex angle and position was shown to be different at toe and heel region. It is necessary that midsole hardness and thickness required to functional shoes be analyzed in the further study.

A Basic Study on Position Fixing by Free Gyros (자유자이로를 이용한 위치결정에 관한 기초 연구)

  • Park, Sok-Chu;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.653-657
    • /
    • 2004
  • The authors aim to design further an upgraded and self-contained position fixing system to meet the future commercial requirements. As a first step this paper is to investigate the theoretical structure of position fixing based on the nature of free gyro, in which the tilt angles of the two spin axes at an arbitrary position are measured respectively and the elapsed time with respect to a reference position or starting point is observed And it illustrates some limitations to be expected in this system.