• 제목/요약/키워드: angle-only data

검색결과 337건 처리시간 0.032초

이모장치를 사용한 골격성 III급부정교합 아동의 두개악안면 형태변화에 대한 두부방사선계측학적 연구 (A ROENTGENOCEPHALOMETRIC STUDY ON THE EFFECTS OF THE CHINCAP IN THE SKELETAL CLASS III MALOCCLUSION)

  • 황치일;서정훈
    • 대한치과교정학회지
    • /
    • 제19권1호
    • /
    • pp.219-243
    • /
    • 1989
  • The purpose of this study was to evaluate the effects of the chincap therapy on the craniofacial structure in persons with skeletal Class III malocclusion. The patients selected for this study were treated with extra-oral chincap therapy only. Both control and treatment samples were obtained from Seoul National University Hospital where these longitudinal data were gathered. 55 treated patients and 14 control patients were studied. The mean ages at the 1st evaluation was 8 years 3 months in the treatment sample and 9 years 4 months in the control sample. The duration of chincap therapy was variable but averaged 2 years of treatment. Post-treatment observation procedeeded for 1 year 2 months. Active treatment and post treatment effects were evaluated. The results were as follows: 1. Neither significant restraint nor acceleration of growth was found in the cranial base and maxilla during treatment. 2. A distal rotation of the mandibular complex was seen. 3. Some amount of restraint of growth was found in mandibular body length, ramus height, mandibular length during treatment. 4. The genial angle was reduced. 5. After removal of the chin-cap, forward displacement of the mandible took place.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

치료적 승마가 뇌성마비의 체간 고유수용성, 안정성 및 자세에 미치는 영향 (The Effects of Hippotherapy over 8 Weeks on Trunk Proprioception, Stability and Posture in Cerebral Palsy Patients)

  • 정진화;유재호
    • The Journal of Korean Physical Therapy
    • /
    • 제22권5호
    • /
    • pp.63-70
    • /
    • 2010
  • Purpose: In this study, children with cerebral palsy were treated for 8 weeks using horse riding trunk proprioception, stability and posture to investigate the effect of hippotherapy in the field of physical therapy. Methods: A total of 18 subjects were divided into an experimental group treated by horseback riding and a control group. Both groups were evaluated pre- and post-treatment. Trunk proprioception was measured three times in the sitting position with their eyes and ears closed to reach the target position the angle error of the mean was calculated. Trunk stability was measured using a forceplate and the data were used to calculate the postural sway path & postural sway velocity. Posture was evaluated using the Posture Assessment Scale (PAS). Results: After hippotherapy, the experimental group showed a significant improvement in trunk proprioception, stability and posture (p<0.05), but the control group improved in posture only (p<0.05). Trunk proprioception, stability and posture was significantly different between the two groups (p<0.05). Conclusion: Eight weeks of hippotherapy is effective in improving trunk proprioception, stability, and posture. Research using this therapy should be studied further as a possible new therapeutic approach in the field of physical therapy.

뒤꿈치 인솔착용과 시각통제 유무가 하이힐 착용 시 균형관련 지수에 미치는 영향 (Influence of Heel Insole and Visual Control on Body Sway Index with High-heeled Shoes)

  • 윤정규
    • 대한물리의학회지
    • /
    • 제9권4호
    • /
    • pp.407-413
    • /
    • 2014
  • PURPOSE: We investigated the influence of heel insole and visual control on body sway index with high-heeled shoes. METHODS: The subjects of this study were 61 healthy students. None of the participants had any orthopedic or neurologic alterations. C90 area, C90 angle, trace length, sway average velocity were measured using a force plate by BT4. The variables were measured both with insole and without insole when wearing high-heeled shoes under the conditions of eyes open and eyes closed. The collected data were analyzed using the Kolmogorov-Smirnov test and paired t-test. RESULTS: When wearing high-heeled shoes with insole under the conditions of eyes open, trace length, C90 area, velocity were significantly more decreased than without insole (p<.01). When wearing high-heeled shoes with insole under the conditions of eyes closed, only C90 area was significantly more decreased than without insole (p<.05). When wearing high-heeled shoes with insole under the conditions of eyes open, trace length, C90 area, velocity were significantly more decreased than under the conditions of eyes closed (p<.01). CONCLUSION: The present study demonstrates that the use of high-heeled shoes with insole supported from heel to midfoot more increased static balance than without insole under the conditions of eyes open.

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

분산 제어기 구조를 갖는 마스터 암의 기구학 설계 및 해석

  • 이장욱;김윤상;이수용;김문상
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.532-539
    • /
    • 2001
  • In robot teleoperation, much research has been carried out to control the slave robot from remote site. One of the essential devices for robot teleoperation is the masterarm, which is a path command generating device worn on human arm. In this paper, a new masterarm based on human kinematics is proposed. Its controller is based on the distributed controller architecture composed of two controller parts: a host controller and a set of satellite controllers. Each satellite controller measures the corresponding joint angle, while the host controller performs forward and inverse kinematics calculation. This distributed controller architecture can make the data updating faster, which allows to implement real-time implementation. The host controller and the satellited controllers are networked via three-wire daisy-chained SPI(Serial Peripheral Interface) protocol, so this architecture makes the electrical wiring very simple, and enhances maintenance. Analytical method for finding three additional unknown joint angles is derived using only three measured angles for each shoulder and wrist, which makes th hardware implementation very simple by minimizing the required number of satellite controllers. Finally, the simulation and experiment results are given to demonstrate the usefulness and performance of the proposed masterarm.

  • PDF

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석 (Analysis of Face Direction and Hand Gestures for Recognition of Human Motion)

  • 김성은;조강현;전희성;최원호;박경섭
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

설계점 및 탈설계점에서의 rotor-stator 상호작용에 의한 비정상 천이 경계층의 수치해석적 연구 (Unsteady Transitional Boundary Layer due to Rotor Stator Interaction at Design and Off Design Operations)

  • 강동진;전현주
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.17-30
    • /
    • 1999
  • The unsteady transitional boundary layer due to rotor-stator interaction was studied at two operation points, the design and one off design points. The off design point leads to lower blade loading and lower Reynolds number. A Navier-Stokes code developed in the previous study was parallelized to expedite computations. A low Reynolds number turbulence model was used to close the momentum equations. All computations show good agreement with experimental data. The wake induced transitional strip on the suction side of the stator is clearly captured at design point operation. There is no noticeable change in shape and phase angle of the wake induced strip even in the laminar sublayer. The wake induced transitional strip at off design point shows more complex structure. The wake induced transitional strip is observed only in the turbulent layer, and becomes obscure in the laminar sublayer and buffer layer. This behavior is probably consequent upon that the transition is governed by both wake induced strip and natural transition mechanism by Tollmien-Schlichting wave.

  • PDF

글라이딩하는 날치의 날개형상 및 성능에 관한 연구 (Investigation of the Wing Design and Performance of a Gliding Flying Fish)

  • 박형민;최해천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF