• Title/Summary/Keyword: angle of rotation

Search Result 1,346, Processing Time 0.03 seconds

A Study on Active SAR Satellite Maneuver Time Reduction through Sequential Rotation (연속회전을 통한 능동 합성개구레이더위성 기동시간 단축 연구)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.648-656
    • /
    • 2015
  • Active SAR satellite's main maneuver is roll axis maneuver to change SAR antenna direction. In addition, yaw steering is required to minimize the doppler centroid variation. Thus, it is resonable to assign the torque/momentum capacity mostly to roll axis and then yaw axis. In this case, the pitch axis shows low agility performance. However, due to orbit maintenance, large angle maneuver about pitch axis is sometimes required. In this paper, we study the pitch axis maneuver time reduction through sequential rotation about roll and yaw axis. Since these two axes have high agility performance than pitch axis, maneuver time reduction is possible when large angle rotation about pitch axis is required.

A Calculation Method for the Tilt Angle of Missile Round using Roll Rotation (롤 회전을 이용한 장입유도탄 비정렬각 산출기법)

  • Park, Dong-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.500-506
    • /
    • 2018
  • In this paper, we considered the one-shot alignment using master inertial navigation system (MINS) and slave inertial navigation system (SINS) in the missile to find the exact posture of a missile. In order to perform one-shot alignment, the tilt angle between MINS and SINS must be obtained, which can be compensated by obtaining the tilt angle between missile round and SINS. The tilt angle was calculated by using the roll rotation of missile round, jig for rotating the missile round and interface structure to measure the horizontal state by using a horizontal angle meter were constructed. As a result of the tilt angle save (TAS) inspection, the tilt angle ${\alpha}$, ${\beta}$, ${\gamma}$ is normal range and it is possible to perform one-shot alignment by compensating this value.

Dynamic Response Analysis of Twisted High-Rise Structures by Plane Rotation Angle (비틀어진 형상(Twisted) 고층 구조물의 평면 회전 각도별 동적 응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.105-112
    • /
    • 2021
  • In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.

Oblique Single-Cut Rotation Osteotomy for Correction of Femoral Varus-Torsional Deformities in 3D-Reconstructed Canine Bone Models

  • Kim, Hyeon-Ho;Roh, Yoon-Ho;Lee, Je-Hun;Jeong, Jae-Min;Jeong, Seong Mok;Lee, Hae Beom
    • Journal of Veterinary Clinics
    • /
    • v.37 no.4
    • /
    • pp.180-184
    • /
    • 2020
  • The purpose of this study was to report the reliability and validity of oblique single-cut rotation osteotomy (OSCRO) in 3D-reconstructed canine bone models with femoral varus and torsional deformities. A healthy adult male beagle was recruited to create a 3D bone model, and this bone model was modified by using a 3D program. Fifteen bone models were constructed for this study. OSCRO simulation was performed in accordance with the plan after printing using a 3D printing machine. The anatomical lateral distal femoral angle (aLDFA), anteversion angle (AA), anatomical caudo-distal femoral angle (aCdDFA), mechanical caudo-distal femoral angle (mCdDFA) and pre- and postoperative bone length were calculated. There were no significant differences between the target values and postoperative values. In addition, the difference between pre- and postoperative bone length was small (p = 0.001). Our findings suggest that OSCRO could be an effective surgical option for MPL with bone deformities in small-breed dogs that often undergo conventional distal femoral osteotomy.

Detection Method of Face Rotation Angle for Crosstalk Cancellation (크로스토크 제거를 위한 얼굴 방위각 검출 기법)

  • Han, Sang-Il;Cha, Hyung-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • The method of 3D sound realization using 2 speakers provides two advantages: cheap and easy to build. In the case, crosstalk between 2 speakers has to be eliminated. To calculate and remove the effect of the crosstalk it is essential to find a rotation angle of human head correctly. In the paper, we suggest an algorithm to find the head angle of 2 channel system. We first detect a face area of the given image using Haar-like feature. After that, the eve detection using pre-processor and morphology method. Finally, we calculate the face rotation angle with the face andi the eye location. As a result of the experiment on various face images, the proposed method improves the efficiency much better than the conventional methods.

A Single Case Study of Cobb's Angle, Angle of Trunk Rotation (ATR), and Height Changes in Adolescent Idiopathic Scoliosis Patients following 12 Weeks of Wearing a 3D Fabric Brace (12주간의 3D패브릭 보조기 착용에 따른 청소년 특발성 척추측만증 환자의 Cobb's Angle, Angle of Trunk Rotation (ATR), 신장 변화의 단일사례 연구)

  • Sang-Gil Lee;Eun-Taek Oh;Ji-Eun Kang
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.2
    • /
    • pp.73-83
    • /
    • 2023
  • Objective: Adolescent idiopathic scoliosis patients make up 40% of all scoliosis patients, and it is likely to increase even more because of the increase in sitting times due to the pandemic. Method: The subject of this study was a 16-year-old female student. The Cobb's Angle at initial value was 42° at the thoracic and 33° at the lumbar. The subject's height was 161.6 cm, and the type of scoliosis was 3CL. The brace was built with fabric materials with the size information from the X-ray information and actual measurements. The brace was made for the adolescents to wear for a longer time by making them put pressure on the same pressure points of the existing braces. The subjects were required to wear the device for 16 hours every day for three months. Additional features to check the pressure and time were synchronized through an app for easier communication and management with the responsible investigator. Results: After wearing the 3D Fabric brace, Cobb's angle changed from 42° to 33° at the thoracic and 33° to 23° at the lumbar. The ATR changed from 9° to 8° at the thoracic and 11° to 6° at the lumbar. As a result, the changes in the ATR angle do relate to the decrease of Cobb's angle, which made the angle of scoliosis that is bent in a three-dimensional way improve, making the height of the subject increase from 161.6 cm to 163.5 cm. Conclusion: Through this study, developing a brace that is made in the form of the 3CL to align the strap direction and putting pressure on the proper pressure points makes Cobb's angle and the ATR smaller. This means that there is a positive effect on the changes in height. A brace made of light fabric material is a good brace to help treat adolescent idiopathic scoliosis. There was an opinion that it is more comfortable to wear than existing braces, but it seems necessary to conduct a quantitative study about the before and after of wearing the brace and a survey for Korean specific cases.

Implementation of Omni-directional Image Viewer Program for Effective Monitoring (효과적인 감시를 위한 전방위 영상 기반 뷰어 프로그램 구현)

  • Jeon, So-Yeon;Kim, Cheong-Hwa;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.939-946
    • /
    • 2018
  • In this paper, we implement a viewer program that can monitor effectively using omni-directional images. The program consists of four modes: Normal mode, ROI(Region of Interest) mode, Tracking mode, and Auto-rotation mode, and the results for each mode is displayed simultaneously. In the normal mode, the wide angle image is rendered as a spherical image to enable pan, tilt, and zoom. In ROI mode, the area is displayed expanded by selecting an area. And, in Auto-rotation mode, it is possible to track the object by mapping the position of the object with the rotation angle of the spherical image to prevent the object from deviating from the spherical image in Tracking mode. Parallel programming for processing of multiple modes is performed to improve the processing speed. This has the advantage that various angles can be seen compared with surveillance system having a limited angle of view.

Treatment and Prevention of Abnormality with Lateral Flexion and Rotation in Cervical Spine

  • Lee, Hyun-Chang;Shin, Seong-Yoon;Park, Ki-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.189-194
    • /
    • 2019
  • In the healthcare system, the human neck(cervical spine) is one of the most important organs. The area that supports the human head is the cervical spine. Nowadays, we are often overworked our neck to calls with the smart phone or see the monitors. In this paper, we investigate the abnormalities of lateral flexion and rotation of the cervical spine. The normal angle of lateral flexion is $20^{\circ}$ to $45^{\circ}$ and the normal angle of rotation is $50^{\circ}$ to $90^{\circ}$. If this angle is below normal and we feel pain, there is something wrong with the cervical spine. In addition, learn how to measure the lateral flexion and rotation of the neck or cervical spine, and also to find out how to treat an abnormality. We also look at how to prevent more than lateral flexion and rotation of the cervical spine. The experiment was carried out with 100 people in their 50s, men and women, to find out whether the neck is abnormal.

A Block Classification and Rotation Angle Extraction for Document Image (문서 영상의 영역 분류와 회전각 검출)

  • Mo, Moon-Jung;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.509-516
    • /
    • 2002
  • This paper proposes an efficient algorithm which recognizes the mixed document image consisting of the images, texts, tables, and straight lines. This system is composed of three steps. The first step is the detection of rotation angle for complementing skewed images, the second is detection of erasing an unnecessary background region and last is the classification of each component included in document images. This algorithm performs preprocessing of detecting rotation angles and correcting documents based on the detected rotation angles in order to minimize the error rate by skewness of the documentation. We detected the rotation angie using only horizontal and vertical components in document images and minimized calculation time by erasing unnecessary background region in the detecting process of component of document. In the next step, we classify various components such as image, text, table and line area included in document images. we applied this method to various document images in order to evaluate the performance of document recognition system and show the successful experimental results.

Analysis of Successful Landing by the Type of the Salto Backward (뒤 공중 돌기 유형에 따른 착지동작의 성공요인 분석)

  • Han, Yoon-soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study is to provide training materials for practical use by investigating the kinematical variables of the successful landing by the type of the salto backward such as Tuck, Pike. For this study, the subjects are 4 male national gymnasts using 3-dimensional cinematographic method. Based on the results of this study, the conclusions are drawn as follows. 1. In flight phase, Tuck and Pike show fast extension after completing minimum angle of hip joint passing through the peak. It is very important factor to control body with gaining time before landing while decreasing the velocity of flight rotaion. 2. In Landing phase, the angles of each joint for successful landing are shown as $92deg{\sim}100deg$ for knee angle, $52deg{\sim}57deg$ for hip angle, and $56deg{\sim}70deg$ for shoulder angle. 3. Tuck and Pike dramatically decrease the height of COG, and horizontal/vertical velocity of COG from TD to LD. Also, it is shown that the knee angle, the hip angle and the shoulder angle decrease drastically. On the other hand, the angular velocity of trunk rotation shows negative direction and due to this, the angle of trunk rotation is shown as re-flexion.