• Title/Summary/Keyword: angle dependence

Search Result 273, Processing Time 0.029 seconds

A NEW MEASUREMENT METHOD OF FEMORAL ANTEVERSION BASED ON THREE DIMENSIONAL MODELING (3차원 모델링을 이용한 대퇴 전염각의 측정)

  • Kim, June-S.;Park, Hee-J.;Choi, Kwang-S.;Choi, Kui-W.;Kim, Sun-I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.141-144
    • /
    • 1997
  • Femoral neck anteversion is the angle between the neck and the knee axis projected on a plane perpendicular to the longitudinal axis. Conventional methods that use cross-sectional Computed Tomography(CT) images to estimate femoral anteversion have several problems because of the complex 3D structure of the femur. These are the ambiguity of defining the longitudinal axis, the femoral neck axis and condylar line, and the dependence on patient positioning. Especially the femoral neck axis that is known as a major source of error is hard to determine from a single or multiple 2D transverse images. So we developed a new method for measuring femoral anteversion by 3D modeling method. In this method, femoral head is modeled as a sphere. The center of femoral neck is the mid-point of the 2D reconstructed oblique image in the femoral neck part. Then neck axis is a line connecting foregoing two centers. We model the longitude of femur as a cylinder, and the long axis is defined from the fitted cylinder. The knee axis which is tangent to the back of the femoral condyles is easily determined by table-top method. By the definition of femoral anteversion, the femoral anteversion is easily calculated from this model.

  • PDF

Galvanomagnetic electromotive force effect of Magnetic $Ni_{53}-Fe_{47}$ Thin Films ($Ni_{53}-Fe_{47}$ 자성박막의 신형전류자기 기전력효과)

  • Jung, Han;Son, Hee-Young;Kim, Mee-Yang;Jang, Hyun-Suk;Rhee, Jang-Roh;Lee, Yong-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.272-276
    • /
    • 1994
  • A new Galvanomagnetic electrorootive force effect of $Ni_{53}-Fe_{47}$ thin films is studied. The dependence of this effect on $\theta$, angle between the current and the magnetic field, is found to be the form of sin $2\theta$, in contrast with that of the magneto resistance effect cas $2\theta$ and that of the Hall effect sin $\theta$. Property of this effect is that lthe rate of the voltage variation depending on the magnetic field is extremely large as compared with the magnetiresistance effect. It is theoretically confirmed that this effect is well understood on the basis of the two carrier types model.

  • PDF

Dependence of Geomagnetic Storms on Their Assocatied Halo CME Parameters

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Kyoung-Sun;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.95.2-95.2
    • /
    • 2012
  • We have compared the geoeffective parameters of halo coronal mass ejections (CMEs) to predict geomagnetic storms. For this we consider 50 front-side full halo CMEs whose asymmetric cone model parameters and earthward direction parameter were available. For each CME we use its projected velocity (Vp), radial velocity (Vr), angle between cone axis and sky plane (${\gamma}$) from the cone model, earthward direction parameter (D), source longitude (L), and magnetic field orientation (M) of the CME source region. We make a simple and multiple linear regression analysis to find out the relationship between CME parameters and Dst index. Major results are as follows. (1) $Vr{\times}{\gamma}$ has a higher correlation coefficient (cc = 0.70) with the Dst index than the others. When we make a multiple regression of Dst and two parameters ($Vr{\times}{\gamma}$, D), the correlation coefficient increases from 0.70 to 0.77. (2) Correlation coefficients between Dst index and $Vr{\times}{\gamma}$ have different values depending on M and L. (3) Super geomagnetic storms (Dst ${\leq}$ -200 nT) only appear in the western and southward events. Our results demonstrate that not only the cone model parameters together with the earthward direction parameter improve the relationship between CME parameters and Dst index but also the source longitude and its magnetic field orientation play a significant role in predicting geomagnetic storms.

  • PDF

PAGAN II: THE EVOLUTION OF AGN JETS ON SUB-PARSEC SCALES

  • OH, JUNGHWAN;TRIPPE, SASCHA;KANG, SINCHEOL;KIM, JAE-YOUNG;PARK, JONG-HO;LEE, TAESEOK;KIM, DAEWON;KINO, MOTOKI;LEE, SANG-SUNG;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.299-311
    • /
    • 2015
  • We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the uv coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations – flat core and steep jets – while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about 5c. This constrains the lower limits of the intrinsic component velocities to ~ 0.98c and the upper limits of the angle between jet and line of sight to ~20°. In agreement with global jet expansion, jet components show systematically larger diameters d at larger core distances r, following the global relation d ≈ 0.2r, albeit within substantial scatter.

Identification of backside solar proton events

  • Park, Jin-Hye;Moon, Yong-Jae;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2010
  • Solar proton events, whose fluxes are larger than 10 particles cm-2 sec-1 ster-1 for >10 MeV protons, have been observed since 1976. NOAA proton event list from 1997 to 2006 shows that most of the events are related to both flares and CMEs but a few fraction of events (5/93) are only related with CMEs. In this study, we carefully identified the sources of these events. For this, we used LASCO CME catalog and SOHO MDI data. First, we examined the directions of CMEs related with the events and the CMEs are found to eject from the western hemisphere. Second, we searched a major active region in the front solar disk for several days before the proton events occurred by taking into account two facts: (1) The location of the active region is consistent with the position angle of a given CME and (2) there were several flares in the active region or the active region is the largest among several candidates. As a result, we were able to determine active regions which are likely to produce proton events without ambiguity as well as their longitudes at the time of proton events by considering solar rotation rate, $13.2^{\circ}$ per day. From this study, we found that the longitudes of five active regions are all between $90^{\circ}W$ and $120^{\circ}W$. When the flare peak time is assume to be the CME event time, we confirmed that the dependence of their rise times (proton peak time - flare peak time) on longitude are consistent with the previous empirical formula. These results imply that five events should be also associated with flares which were not observed because they occurred from back-side.

  • PDF

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Fabrication Thermal Responsive Tunable ZnO-stimuli Responsive Polymer Hybrid Nanostructure

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Hwang, Ki-Hwan;Ju, Dong-Woo;Jeon, So-Hyoun;Seo, Hyeon-Jin;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.2-429.2
    • /
    • 2014
  • ZnO nanowire is known as synthesizable and good mechanical properties. And, stimuli-responsive polymer is widely used in the application of tunable sensing device. So, we combined these characteristics to make precise tunable sensing devise. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using nanosphere template with various conditions via hydrothermal process. Also, pH-temperature dependant tuning ability of nanostructure was studied. The brief experimental scheme is as follow. First, Zno seed layer was coated on a si wafer ($20{\times}20mm$) by spin coater. And then $1.15{\mu}m$ sized close-packed PS nanospheres were formed on a cleaned si substrate by using gas-liquid-solid interfacial self-assembly method. After that, zinc oxide nanowires were synthesized using hydrothermal method. Before the wire growth, to specify the growth site, heat treatment was performed. Finally, NIPAM(N-Isopropylacrylamide) was coated onto as-fabricated nanostructure and irradiated by UV light to form the PNIPAM network. The morphology, structures and optical properties are investigated by FE-SEM(Field Emission Scanning electron Microscopy), XRD(X-ray diffraction), OM(Optical microscopy), and WCA(water contact angle).

  • PDF

Target Strength Measurements of Live Golden Cuttlefish Sepia esculenta at 70 and 120 kHz

  • Lee, Dae-Jae;Demer, David A.
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • Cuttlefish Sepia esculenta are commercially important in Korea. Assessments of their biomass currently depend on fishery-landings data, which may be biased. Towards fishery-independent acoustic surveys of cuttlefish, target strength (TS) measurements at 70 and 120 kHz were made of 23 live cuttlefish, in early May 2010. The fish were caught by traps in the inshore waters around Geojedo, Korea. The TS were measured using split-beam echosounders (Simrad ES60 and EY500, respectively). The cuttlefish mantle lengths (L) ranged from 15.6 to 23.5 cm (mean L=17.8 cm) and their masses (W) ranged from 335 to 1020 g (mean W=556.1 g). Their mean TS values at 70 and 120 kHz were -33.01 dB (std=1.39 dB) and -31.76 dB (std=2.15 dB), respectively. The mean TS at 70 kHz was 0.17 dB higher than the TS-length relationship resulting from a least-squares fit to the data ($TS=24.67{\log}_{10}L(cm)-64.03$, $r^2$ = 0.52, N=23). The mean TS at 120 kHz was 0.45 dB higher than the fitted TS-length relationship ($TS=40.59{\log}_{10}L(cm)-82.96$, $r^2$ = 0.58, N=23). The differences between the mean TS values and an equation regressed from all of the TS measurements at both frequencies ($TS=24.92{\log}_{10}L(cm)-4.92{\log}_{10}{\lambda}(m)-22.82$, $r^2$ = 0.86, N=46) was 0.22 dB at 70 kHz and 0.31 dB at 120 kHz, respectively.

Formation of Vanadium-based Ohmic Contacts to n-GaN (n-GaN/vanadium-based Ohmic 접촉 형성)

  • Song, June-O;Leem, Dong-Seok;Kim, Sang-Ho;Seong, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.567-571
    • /
    • 2003
  • We investigate vanadium (V)-based Ohmic contacts on n-GaN ($N_{d}$=$2.0${\times}$10^{18}$ $cm^{-3}$ ) as a function of annealing temperature. It is shown that the V (60 nm) contacts become Ohmic with specific contact resistances of $10^{-3}$ $- 10^{-4}$$\textrm{cm}^2$ upon annealing at 650 and $850^{\circ}C$. The V(20 nm)/Ti(60 nm)/Au(20 nm)contacts produce very low specific contact resistances of $2.2 ${\times}$ 10^{-5}$ and$ 4.0${\times}$10^{-6}$$\textrm{cm}^2$ when annealed at 650 and $850{\circ}C$, respectively. A comparison shows that the use of the overlayers (Ti/Au) is very effective in improving Ohmic property. Based on the current-voltage measurement, Auger electron spectroscopy, glancing angle X-ray diffraction, and X-ray photoemission spectroscopy results, the possible mechanisms for the annealing temperature dependence of the Ohmic behavior of the V-based contacts are described and discussed.d.

The influence of cuttlebone on the target strength of live golden cuttlefish (Sepia esculenta) at 70 and 120 kHz

  • Lee, Daejae
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.8.1-8.11
    • /
    • 2016
  • To quantitatively estimate the influence of cuttlebone on the target strength (TS) of golden cuttlefish, the cuttlebone was carefully extracted from 19 live cuttlefish caught using traps in the inshore waters around Geojedo, Korea, in early May 2010 and the TS was measured using split-beam echosounders (Simrad ES60 and EY500). The TS-length relationships for the cuttlefish (before the extraction of cuttlebone, Fish Aquat Sci. 17:361-7, 2014) and the corresponding cuttlebone were compared. The cuttlebone length ($L_b$) ranged from 151 to 195 mm (mean $L_b$ = 168.3 mm) and the mass ($W_b$) ranged from 29.3 to 53.2 g (mean $W_b$ = 38.8 g). The mean TS values at 70 and 120 kHz were -33.60 dB (std = 1.12 dB) and -32.24 dB (std = 1.87 dB), respectively. The mean TS values of cuttlebone were 0.19 dB and 0.04 dB lower than those of cuttlefish at 70 and 120 kHz, respectively. For 70 and 120 kHz combined, the mean TS value of cuttlebone was -32.87 dB, 0.11 dB lower than that of cuttlefish (-32.76 dB). On the other hand, the mean TS value of cuttlebone predicted by the regression ($TS_b$ = 24.86 $log_{10}$ $L_b$ - 4.86 $log_{10}$ ${\lambda}$ - 22.58, $r^2$ = 0.85, N = 38, P < 0.01) was -33.10 dB, 0.04 dB lower than that of cuttlefish predicted by the regression ($TS_c$ = 24.62 $log_{10}$ $L_c$ - 4.62 $log_{10}$ ${\lambda}$ - 22.64, $r^2$ = 0.85, N = 38, P < 0.01). That is, the contribution of cuttlebone to the cuttlefish TS determined by the measured results was slightly greater than that by the predicted results. These results suggest that cuttlebone is responsible for the TS of cuttlefish, and the contribution is estimated to be at least 99 % of the total echo strength.