Browse > Article
http://dx.doi.org/10.1186/s41240-016-0010-3

The influence of cuttlebone on the target strength of live golden cuttlefish (Sepia esculenta) at 70 and 120 kHz  

Lee, Daejae (Division of Marine Production System Management, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.19, no.2, 2016 , pp. 8.1-8.11 More about this Journal
Abstract
To quantitatively estimate the influence of cuttlebone on the target strength (TS) of golden cuttlefish, the cuttlebone was carefully extracted from 19 live cuttlefish caught using traps in the inshore waters around Geojedo, Korea, in early May 2010 and the TS was measured using split-beam echosounders (Simrad ES60 and EY500). The TS-length relationships for the cuttlefish (before the extraction of cuttlebone, Fish Aquat Sci. 17:361-7, 2014) and the corresponding cuttlebone were compared. The cuttlebone length ($L_b$) ranged from 151 to 195 mm (mean $L_b$ = 168.3 mm) and the mass ($W_b$) ranged from 29.3 to 53.2 g (mean $W_b$ = 38.8 g). The mean TS values at 70 and 120 kHz were -33.60 dB (std = 1.12 dB) and -32.24 dB (std = 1.87 dB), respectively. The mean TS values of cuttlebone were 0.19 dB and 0.04 dB lower than those of cuttlefish at 70 and 120 kHz, respectively. For 70 and 120 kHz combined, the mean TS value of cuttlebone was -32.87 dB, 0.11 dB lower than that of cuttlefish (-32.76 dB). On the other hand, the mean TS value of cuttlebone predicted by the regression ($TS_b$ = 24.86 $log_{10}$ $L_b$ - 4.86 $log_{10}$ ${\lambda}$ - 22.58, $r^2$ = 0.85, N = 38, P < 0.01) was -33.10 dB, 0.04 dB lower than that of cuttlefish predicted by the regression ($TS_c$ = 24.62 $log_{10}$ $L_c$ - 4.62 $log_{10}$ ${\lambda}$ - 22.64, $r^2$ = 0.85, N = 38, P < 0.01). That is, the contribution of cuttlebone to the cuttlefish TS determined by the measured results was slightly greater than that by the predicted results. These results suggest that cuttlebone is responsible for the TS of cuttlefish, and the contribution is estimated to be at least 99 % of the total echo strength.
Keywords
Sepia esculenta Target strength; Influence of cuttlebone; Tilt angle; Length dependence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Foote KG. Fish target strengths for use in echo integrator surveys. J Acoust Soc Am. 1987;82:981-7.   DOI
2 Foote KG. Range compensation for backscattering measurements in the difference frequency nearfield of a parametric sonar. J Acoust Soc Am. 2012;131:3698-709.   DOI
3 Foote KG, Ona E. Swimbladder cross sections and acoustic target strengths of 13 pollack and 2 saithe. FiskDir Skr Ser HavUnders. 1985;18:1-57.
4 Goddard GC, Welsby VG. The acoustic target strength of live fish. J Cons Int Explor Mer. 1986;42:197-211.   DOI
5 Horne JK. Acoustic ontogeny of a teleost. J Fish Biol. 2008;73:1444-63.   DOI
6 Imaizumi T, Furusawa M, Akamatsu T, Nishimori Y. Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals. J Acoust Soc Am. 2008;124:3440-9.   DOI
7 Kang D, Mukai T, Iida K, Hwang DJ, Myoung JK. The influence of tilt angle on the acoustic target strength of the Japanese common squid (Todarodes pacificus). ICES J Mar Sci. 2005;62:779-89.   DOI
8 Knudsen FR, Gjelland KO. Hydroacoustic observations indicating swimbladder volume compensation during the diel vertical migration in coregonids (Coregonus lavaretus and Coregonus albula). Fish Res. 2004;66:337-41.   DOI
9 Lee DJ. Target strength measurements of black rockfish, goldeye rockfish and black scraper using a 70-kHz split beam echo sounder (in Japanese with English abstract). Nippon Suisan Gakkaishi. 2006;72:644-50.   DOI
10 Lee DJ, Demer DA. Target strength measurements of live golden cuttlefish (Sepia esculenta) at 70 and 120 kHz. Fish Aquat Sci. 2014;17:361-7.
11 Love RH. An empirical equation for the determination of the maximum sideaspect target strength of an individual fish. Naval Oceanographic Office. AD849034. 1969. p. 1-17.
12 Love RH. Measurements of fish target strength: a review. Fish Bull. 1971;69:703-15.
13 Madsen PT, Wilson M, Johnson M, Hanlon RT, Bocconcelli A, Aguilar de Soto N, et al. Clicking for calamari: toothed whales can echolocate squid Loligo pealeii. Aquat Biol. 2007;1:141-50.   DOI
14 McClatchie S, Alsop J, Coombs RF. A re-evaluation of relationships between fish size, acoustic frequency, and target strength. ICES J Mar Sci. 1996;53:780-91.   DOI
15 McClatchie S, McCauley GJ, Coombs RF. A requiem for the use of 20 log10 Length for acoustic target strength with special reference to deep-sea fishes. ICES J Mar Sci. 2003;60:419-28.   DOI
16 Midtvedt D, Sobko T, Midtvedt T. Nitric oxide (NO) gas present in the swim bladder of cod (Gadus morhua). Microb Ecol Health Dis. 2007;19:150-2.   DOI
17 Neige P. Combining disparity with diversity to study the biogeographic pattern of sepiida. Berliner Palaobiol Abh. 2003;3:189-97.
18 Pena H, Foote KG. Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES J Mar Sci. 2008;65:1751-61.   DOI
19 Sawada K, Uchikawa K, Matsuura T, Sugisaki H, Amakasu K, Abe K. In situ and Ex situ target strength measurement of mesopelagic lanternfish, Diaphus theta (Family mactophidae). J Mar Sci Technol. 2011;19:302-11.
20 Sherrard KM. Cuttlebone morphology limits habitat depth in eleven species Sepia (Cephalopoda: Sepiidae). Biol Bull. 2000;198:404-14.   DOI
21 Simmonds J, MacLennan D. Fisheries Acoustics. Oxford: Blackwell Publishing; 2005.
22 Sunardi, Yudhana A, Din J, Bidin R, Hassan R. Swimbladder on fish target strength. Telkomnika. 2008;6:139-44.   DOI
23 Webber DM, Aitken JP, O'Dor RK. Costs of locomotion and vertic dynamics of cephalopods and fish. Physiol Biochem Zool. 2000;73:651-62.   DOI
24 Cadman J, Zhou S, Chen Y, Li W, Appleyard R, Li Q. Characterization of cuttlebone for a biomimetic design of cellular structures. Acta Mech Sin. 2010b;26:27-35.   DOI
25 Benoit-Bird KJ, Gilly WF, Au WWL, Mate B. Controlled and in situ target s strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources. J Acoust Soc Am. 2008;123:1318-28.   DOI
26 Cadman J, Chen Y, Zhou S, Li Q. Creating biomaterials inspired by the microstructure of cuttlebone. Mater Sci Forum. 2010a;654:2229-32.
27 Chen Y, Cadman J, Zhou S, Li Q. Computer-aided design and fabrication of biomimetic materials and scaffold micro-structures. Adv Mater Res. 2011;213:628-32.   DOI
28 Conti SG, Demer DA. Wide-bandwidth acoustical characterization of anchovy and sardine from reverberation measurements in an echoic tank. ICES J Mar Sci. 2003;60:617-24.   DOI
29 Demer DA, Martin LV. Zooplankton target strength: Volumetric or areal depenpence? J Acoust Soc Am. 1995;98:1111-8.   DOI
30 Denton EJ, Gilpin-Brown JB. The buoyancy of the cuttlefish, Sepia Officinalis (L.). J Mar Bio Ass UK. 1961;41:319-42.   DOI
31 Denton EJ, Taylor DW. The composition of gas in the chambers of the cuttlebone of Sepia Officinalis. J Mar Bio Ass UK. 1964;44:203-7.   DOI
32 Denton EJ, Gilpin-Brown JB, Howarth JV. The osmotic mechanism of the cuttlebone. J Mar Bio Ass UK. 1961;41:351-64.   DOI
33 Fnney JL, Robertson GN, McGee CAS, Smith FM, Croll RP. Structure and autonomic innervations of the swim bladder in the zebrafish (Danio rerio). J Comp Neurol. 2006;495:587-606.   DOI
34 Foote KG. Averaging of fish targets strength functions. J Acoust Soc Am. 1980a;67:504-15.   DOI
35 Foote KG. The importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. J Acoust Soc Am. 1980b;67:2084-9.   DOI
36 Foote KG. Rather-high-frequency sound scattering by swimbladdered fish. J Acoust Soc Am. 1985;78:688-700.   DOI