• 제목/요약/키워드: angiotensin-converting

검색결과 663건 처리시간 0.029초

Association between Angiotensin I-Converting Enzyme Gene Polymorphism and Hypertension in Selected Individuals of the Bangladeshi Population

  • Morshed, Mahboob;Khan, Haseena;Akhteruzzaman, Sharif
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.251-254
    • /
    • 2002
  • The genetic factors that contribute to the development of coronary artery disease (CAD) are poorly understood. It is likely that multiple genes that act independently or synergistically contribute to the development of CAD and the outcome. Recently, an insertion/deletion (I/D) polymorphism of the human angiotensin I-converting enzyme (ACE) gene, a major component of the renin-angiotensin system (RAS), was identified. The association of the ACE gene D allele with essential hypertension and CAD has been reported in the African-American, Chinese, and Japanese populations. However, other studies have failed to detect such an association. It has been suggested that these inconsistencies may be due to the difference in backgrounds of the population characteristics. In the present study, we investigated the I/D polymorphism of the ACE gene in 103 subjects of both sexes, consisting of 59 normal controls and 44 patients with hypertension. The allele and genotype frequency were significantly different between the hypertensive and control groups (p < 0.01). Among the three ACE I/D variants, the DD genotype was associated with the highest value of the mean systolic blood pressure [SBP] and mean diastolic blood pressure [DBP] (p = < 0.05) in men, but not in women. In the overall population, the mean SBP and DBP was highest in DD subjects, intermediate in I/D subjects, and the least in II subjects.

돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝 (Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme)

  • 윤장호;윤주억;홍광원
    • Applied Biological Chemistry
    • /
    • 제49권4호
    • /
    • pp.293-297
    • /
    • 2006
  • 포유류의 조직에 널리 분포되어 있으며 혈압 조절에 중요한 역할을 하는 Angiotensin-converting enzyme(ACE)은 아연을 함유하는 dipeptidase로서 angiotensin I을 가수분해하여 강력한 혈압상승제인 angiotensin II를 생성하는 효소이다. 최근에 돼지의 난소에서 ACE 활성이 측정되었으며, 돼지의 신장에서 ACE 단백질이 분리되어 그 특성이 알려졌다. 그러나 돼지의 어떠한 ACE DNA 염기서열도 아직까지 보고 된 바는 없다. 그러므로 본 연구에서 reverse transcriptase-polymerase chain reaction(RT-PCR)을 이용하여 돼지의 신장 ACE cDNA를 클로닝하고 그 염기서열을 분석하였다. ACE cDNA는 1309개의 아미노산으로 구성되어 있으며 그 분자량은 150kDa이다. 염기서열로부터 유추한 아미노산의 서열을 분석한 결과, N 말단의 33개 아미노산이 signal peptide 역할을 하는 것으로 보이며, C 말단 근처의 짧은 transmembrane 영역은 세포막에 anchor역할을 하는 것으로 보인다. 돼지 신장의 ACE에서 두 개의 매우 유사한 amino acid peptidase domain은 tandem duplication 되어 있으며, 각각의 domain은 다른 포유류의 체세포 ACE들과 마찬가지로 putative metal-binding site(His-Glu-Met-Gly-His)를 하나씩 가지고 있는 것으로 나타났다. 돼지 신장 ACE 서열과 인간, 토끼, 쥐 등과 같은 포유류의 ACE 아미노산 서열들과의 상동성 비교는 진화과정 중 두 domain이 매우 잘 보전되어 왔음을 보여주고 있다.

기호음료 성분의 Angiotensin-I 전환효소 저해작용 (Angiotensin-I Converting Enzyme Inhibitory Activity by the Component of Traditional Tea Materials)

  • 도정룡;김선봉;박영호;김동수
    • 한국식품과학회지
    • /
    • 제25권5호
    • /
    • pp.456-460
    • /
    • 1993
  • 전통 기호음료 성분에 의하여 나타나는 기능특성을 조사하기 위한 연구의 일환으로 결명자,들깨, 대추, 모과, 오미자, 오갈피 및 생강 추출물을 ion-exchange chromatography, 유기용매에 의한 분획, silica gel column chromatography, thin layer chromatography에 의하여 여러 가지 획분으로 분획하여 Angiotensin I 전환효소(ACE) 저해작용을 조사한 결과는 다음과 같다. 기호음료 원료에서 추출한 수용성 획분의 ACE 저해작용은 생강>오갈피>오미자>들깨>결명자>모과>대추의 순으로 나타났다. 일반 가정에서 널리 이용되고 있는 결명자에서 분리한 compound C 는 ACE 저해제로 알려져 있는 bradykinin에 비하여 ACE 저해작용이 비교적 낮았다.

  • PDF

Purification and Characterization of an Angiotensin Converting Enzyme Inhibitor from Squid Ink

  • Kim, So-youn;Kim, Sun-hye;Song, Kyung-Bin
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 2003년도 제23차 추계총회 및 국제학술심포지움
    • /
    • pp.135.2-135
    • /
    • 2003
  • Angiotensin converting enzyme (ACE) converts angiotensin I into angiotensin II by cleaving C-terminal dipeptide of angiotensin I and inactivates bradykinin. ACE inhibitors have been screened from various food sources since the inhibitors decrease blood pressure. Therefore, in this study, an ACE inhibitor was isolated and purified from squid ink using membrane filtration, gel permeation chromatography, normal phase HPLC, and fast protein liquid chromatography. The purified inhibitor was identified to be a molecular mass of 294 by mass spectrometry, and to have IC$\sub$50/ value of 4.9 $\mu\textrm{g}$/mL.

  • PDF

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • 제5권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

Digestion Pattern of Antihypertensive Angiotensin I-Converting Enzyme Inhibitory Peptides from Saccharomyces cerevisiae in a Successive Simulated Gastricintestinal Bioreactor

  • Jang, Jeong-Hoon;Jeong, Seung-Chan;Lee, Jung-Kee;Lee, Jong-Soo
    • Mycobiology
    • /
    • 제39권1호
    • /
    • pp.67-69
    • /
    • 2011
  • A cell-free extract of Saccharomyces cerevisiae containing the angiotensin I-converting enzyme (ACE) inhibitory peptide was treated in a successive simulated gastric-intestinal bioreactor (step 1: amylase digestion, step 2: gastric fluid digestion, step 3: intestinal fluid digestion) to illustrate the absorption pattern of antihypertensive ACE inhibitory peptide, and the ACE inhibitory activities of each step were determined. Total ACE inhibitory activities of step 1, step 2, and step 3 were 55.96%, 80.09%, and 76.77%, respectively. The peptide sequence of each steps was analyzed by MS/MS spectrophotometry. Eleven kinds of representative peptide sequences were conserved in each step, and representative new peptides including RLPTESVPEPK were identified in step 3.

Angiotensin-Converting Enzyme Gene Polymorphism is not Associated with Myocardial Infarction in Koreans

  • Chai, Seok;Sohn, Dong-Ryul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.645-650
    • /
    • 1998
  • To assess the relationship between angiotensin-converting enzyme (ACE) gene polymorphism and myocardial infarction in Koreans, we recruited 112 healthy, unrelated subjects (mean age 53.4 years) and 104 myocardial infarction survivors (mean age 54.2 years) of both sexes. An insertion/deletion (I/D) polymorphism of the ACE gene was typed by polymerase chain reaction. The I allelic frequency of ACE gene in Korean subjects was irrelavant to myocardial infarction (patients, 65 control subjects 66%), as was true with the D allele. When compared with other populations, the frequency of D allele in Koreans (0.34) was lower than that in Caucasians, and was close to that of other Oriental populations. The data suggest that the ACE gene polymorphism is not an independent genetic risk factor for myocardial infarction in Koreans.

  • PDF

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Malassezia pachydermatis G-14

  • Jeong, Seung-Chan;Kim, Jae-Ho;Kim, Na-Mi;Lee, Jong-Soo
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.142-146
    • /
    • 2005
  • To produce a novel antihypertensive angiotensin I-converting enzyme (ACE) inhibitor from yeast, a yeast isolate, designated G-14 showing the highest ACE inhibitory activity was obtained and identified as Malassezia pachydermatis based on morphological, biochemical and cultural characteristics. The maximal extracellular ACE inhibitor production was obtained from M. pachydermatis G-14 when the strain was cultured in YEPD medium containing 0.5% yeast extract, 3.0% peptone and 2.0% glucose at $30^{\circ}C$ for 24 h and the final ACE inhibitory activity was 48.9% under the above condition.

Angiotensin Converting Enzyme(ACE) 저해제를 생성하는 방선균 분리주의 동정 및 최적 발효조건 (Identification and Culture Conditon of an Actionomycetes Stranin Producing an Angiotensin Converting Enzyme Inhibitor)

  • 문성훈;하상철;이동선;김종국;홍순덕
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.439-445
    • /
    • 1995
  • Identification of Actinomycetes isolate strain SH-8002, a producer of ACE inhibitor, based on procedures employed in the international Streptomyces project. The strain, designated as SH-8002, was identified as Streptomyces zoamyceticus SH-8002 based on its morphological, physiological, biochemical and chemotaxonomic characteristics. The ACE inhibitor produced by the strain was highly achieved in fermentation medium condition that was 1% soluble starch, 0.5% tryptone, 0.2% K$_{2}$HPO$_{4}$, 0.2% CaCO$_{3}$, 0.1% NaCl, pH 8.0 at 30$\circ$C for 144 hrs.

  • PDF

The Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Rainbow Trout Muscle Hydrolysate

  • Kim, Sung-Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제15권3호
    • /
    • pp.183-190
    • /
    • 2012
  • The purpose of this study was the purification and characterization of an angiotensin I converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of rainbow trout Oncorhynchus mykiss muscle. After removal of lipid, the approximate composition analysis of the rainbow trout revealed 24.4%, 1.7%, and 68.3% for protein, lipid, and moisture, respectively. Among six hydrolysates, the peptic hydrolysate exhibited the highest ACE inhibitory activity. We attempted to purify ACE inhibitory peptides from peptic hydrolysate using high performance liquid chromatography on an ODS column. The $IC_{50}$ value of purified ACE inhibitory peptide was $63.9{\mu}M$. The amino acid sequence of the peptide was identified as Lys-Val-Asn-Gly-Pro-Ala-Met-Ser-Pro-Asn-Ala-Asn, with a molecular weight of 1,220 Da, and the Lineweaver-Burk plots suggested that they act as a competitive inhibitor against ACE. Our study suggested that novel ACE inhibitory peptides purified from rainbow trout muscle protein may be beneficial as anti-hypertension compounds in functional foods.