• Title/Summary/Keyword: and system dynamics

Search Result 5,374, Processing Time 0.048 seconds

A Study on Energy Saving Effect from Automatic Control of Air Flowrate and Estimation of Optimal DO Concentration in Oxic Reactor of Wastewater Treatment Plant (하수처리장의 포기조 최적 DO 농도 산정 및 공기송풍량 자동제어를 통한 에너지 절감 효과 도출)

  • Kim, Min Han;Ji, Seung Hee;Jang, Jung Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • It is important to keep stable effluent water quality and minimize operation cost in biological wastewater treatment plant. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. For optimal control, The oxygen uptake rate (OUR) is realtime measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO seT-Point needed for the microorganism is suggested based on real time measurement of oxygen uptake of microorganism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal setpoint decision system by providing the necessary oxygen supply requirement to the microorganisms coping with the variations of influent loading.

Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control (PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어)

  • Park, Min-soo;Park, Seung-kyu;Ahn, Ho-kyun;Kwak, Gun-pyong;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1694-1704
    • /
    • 2015
  • In this paper, a robust trajectory tracking control method of a wheeled mobile robot is newly proposed combining the PDC and the ISMC. The PDC is a relatively simple and easy control method for nonlinear system compared to the other non-linear control methods. And the ISMC can have robust and stable control characteristics against model uncertainties and disturbances from the initial time by placing the states on the sliding plane with desired nominal dynamics. Therefore, the proposed PDC+ISMC trajectory tracking control method shows robust trajectory tracking performance in spite of external disturbance. The tracking performance of the proposed method is verified through simulations. Even though the disturbance increases, the proposed method keeps the performance of the PDC method when there is no disturbance. However, the PDC trajectory tracking control method has increasing tracking error unlike the proposed method when the disturbance increases.

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

Elementary Students' Cognitive-Emotional Rebuttals in Their Modeling Activity: Focusing on Epistemic Affect (모형 구성 과정에서 나타나는 초등학생의 인지, 감정적 반박 -인식적 감정을 중심으로-)

  • Han, Moonhyun;Kim, Heui-Baek
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.155-168
    • /
    • 2017
  • This study investigates how elementary students used cognitive-emotional rebuttals in the context of modeling activities, especially on how their emotional and cognitive processes lead them to use rebuttals in terms of epistemic affect. Twenty-five fifth grade elementary students participated in the study as part of their science class. During the course of their sixth periods, students constructed a human respiratory system model through continuous discussion. The research results showed that elementary students used an elaboration-oriented rebuttal, a defence-oriented rebuttal, and a blame-oriented rebuttal in their modeling activity. The elaboration-oriented rebuttal interspersed with negative epistemic affect was used to elaborate on a student's explanation, and a negative epistemic affect was elicited from their cognitive discrepancy. On the other hand, defence-oriented rebuttal and blame-oriented rebuttal entangled with negative epistemic affect were used to defeat the students rather than help rigor evaluation of students' explanation, and the negative epistemic affect was elicited from the other students' undesirable behavior. These results suggest that students' rebuttals can be elicited by epistemic dynamics related to the epistemic affect. The study shows that if negative epistemic affect were elicited from the other students' naive or false explanations, such an emotion is natural in terms of model construction, and the model can be further developed through the acceptance of the elaboration-oriented rebuttals by students' emotion regulation. In addition, we suggest that negative emotions aroused from the worsening of relationships during small group modeling activities are difficult to regulate and can have negative effects on students' cooperative model construction.

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

Hydrogen Bond Effect on Chain Behavior at the Semidilute Regime of Poly(vinyl alcohol) Aqueous Solution (폴리(비닐 알코올) 수용액의 준희박농도 영역에서 사슬 거동에 대한 수소결합의 효과)

  • Park Il-Hyun;Yu Young-Chol;Park Ki-Sang;Lee Dong-Il;Lyoo Won-Seok
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • In order to investigate the structure and dynamics of atatic poly (vinyl alcohol) (PVA)/water system, laser light scattering experiment has been done in the semi-dilute concentration regime at $25^{\circ}C$. The scattering intensity I(q) can be analyzed with the fractal equation of $I(q){\sim}q^{-m}$ instead of Onstein-Zernike type equation. The fractal dimensionality m was found to be constant after reaching the plateau value of $m=2.6{\pm}0.3$ above C=3wt%. The time correlation function of dynamic light scattering has always two different modes such as fast mode and slow one. The cooperative diffusion of fast mode showed concentration independence contrary 4o the reptation theory's concentration dependent exponent of 3/4. The slow mode can be interpreted as the motion of large scale heterogeneities and its strong concentration dependence is apparent with a large negative exponent of -3.0. It is considered that the stereo-regular arrangement with four successive meso units of -OH plays as a key role in forming such heterogeneity.

Effects of Cephalic Glucopenia on Insulin and Glucagon Secretion in Central Nervous System-Intact Pancreas Perfused Rats (중추신경이 온전한 쥐의 Cephalic Glucopenia가 인슐린과 글루카곤 분비에 미치는 영향)

  • Hyun Ju Choi
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2000
  • In situ brain-pancreas perfusion was performed on male adult Sprague-Dawley rats, of which the central nervous systems (CNS) were intact during the perfusion procedure. The modified Krebs-Ringer buffer with 100 mg/dL of glucose and 20 mM of arginine was perfused for 30 min. In the experimental groups, a cephalic glucopenia was induced at 0 min (GLP1 group) or at 16 min (GLP2 group). The glucopenia was not induced in the control (CONT group). Insulin and glucagon concentrations in the effluent samples from the pancreas were measured using a RIA method. In all three groups, the first and second phases in the dynamics of the insulin and glucagon secretion were observed, which was a typical biphasic secretory pattern. The amount of insulin secretion tended to decrease in the GLP1 and GLP2 groups, but there was no statistically significant difference among the groups. However, the amount of glucagon secretion during 0~15 min of the perfusion period in the GLP1 group was greater as compared to the CONT group (p<0.05). The amount of glucagon secretion during 16~30 min of the perfusion period in the GLP2 group tended to be greater as compared to the CONT group, however there was no statistical significance. These data indicate that the cephalic glucopenia stimulates the direct secretion of glucagon from the pancreas during the early period of perfusion in the CNS-intact pancreatic perfused rats.

  • PDF

Adaptive Limited Dynamic Bandwidth Allocation Scheme for EPON (EPON 시스템의 적응적 Limited 동적 대역 할당 방식)

  • Hwang Jun-Ho;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.449-455
    • /
    • 2006
  • Due to advance in multimedia applications and integrated Internet services, the optical access networks have been actively studied. In particular, Ethernet passive optical network (EPON) has received much attention due to high bandwidth provision with low cost. In EPON system, the data transmission is carried out in two directions: downstream (from OLT to ONU) and upstream (from ONU to OLT). The downstream data is broadcasted to every ONUs, while the upstream data is point-to-point transmitted between each ONU and OLT, where the uplink is shared by all ONUs in the form of TDMA. The bandwidth allocation algorithm is required to efficiently manage the bandwidth on the uplink. The limited algorithm was proposed to enhance the capability of dynamic bandwidth allocation. In this paper, we propose the adaptive limited algorithm to enhance the shortcomings of limited algorithm. The adaptive limited algorithm enhances the dynamics on bandwidth allocation, and at the same time controls the fairness on packet delay. Through the computer simulations, it is shown that the adaptive limited algorithm achieves high dynamic on bandwidth allocation, maintains a good fairness on packet delay between ONUs, and keeps the fairness on the bandwidth on the demand basis.