• 제목/요약/키워드: and size optimization

검색결과 1,516건 처리시간 0.024초

합체박판 기술을 적용한 고장도 경량도어 최적 설계 (Optimal Design of Lightweight High Strength Door with Tailored Blank)

  • 송세일;박경진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

Improved thermal exchange optimization algorithm for optimal design of skeletal structures

  • Kaveh, A.;Dadras, A.;Bakhshpoori, T.
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.263-278
    • /
    • 2018
  • Thermal Exchange Optimization (TEO) is a newly developed algorithm which mimics the thermal exchange between a solid object and its surrounding fluid. In this paper, an improved version of the TEO is developed to fix the shortcomings of the standard version. To demonstrate the viability of the new algorithm, the CEC 2016's single objective problems are considered along with the discrete size optimization of benchmark skeletal structures. Problem specific constraints are handled using a fly-back mechanism. The results show the validity of the improved TEO method compared to its standard version and a number of well-known algorithms.

구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화 (Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

하이드로포밍을 이용한 후륜 현가장치 최적설계 (The Optimization of Rear Suspension Using Hydroforming)

  • 오진호;최한호;박성호
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.481-485
    • /
    • 2008
  • The subframe type rear suspension consisting of a side member and a front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. In this study, a subframe type rear suspension by hydroforming has been developed. In designing suspension, a driving stability and durability should be considered as an important factor for the performance improvement, respectively. Thus, we focus on increasing the stiffness of suspension and decreasing the maximum stress affecting a durability cycle life. Several optimization design techniques such as shape, size, and topology optimization are implemented to meet these requirements. The shapes of rear suspension obtained from optimization are formed by using hydroforming process. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

최적화 기법을 이용한 한국형 소형전술차량의 경량설계 (Light-weight Design of a Korean Light Tactical Vehicle Using Optimization Technique)

  • 서권희;송부근
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.336-343
    • /
    • 2015
  • One of various main jobs in the design of a new tactical vehicle is to develop the lightest chassis parts satisfying the required durability target. In this study, the analytic methods to reduce the size and weight of a lower control arm and chassis frame of a Korean light tactical vehicle are presented. Topology optimization by ATOM (Abaqus Topology Optimization Module) is applied to find the optimal design of the suspension arm with volume and displacement constraints satisfied. In case of chassis frame, the light-weight optimization process associated with design sensitivity method is developed using Isight and ABAQUS. By these analytic methods we can provide design engineers with guides to where and how much the design changes should be made.

등가정하중을 이용한 차량 전면구조물 충돌최적설계 (Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads)

  • 이영명;안진석;박경진
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구 (Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization)

  • 조정길;구정서;정현승
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1099-1107
    • /
    • 2013
  • 본 연구에서는 알루미늄 압출재로 구성된 한국형 표준전동차모델(K-EMU)의 차체를 대상으로 치수 최적설계와 구조체 소재 변경을 통한 경량화방안에 대해 연구하였다. 우선 K-EMU 차체의 하부구조, 측벽구조, 단부구조의 부재별 두께를 현재의 압출가능 두께를 적용하여 치수 최적화 기법으로 약 14.8% 경량화 하였다. 그리고 치수최적설계 된 K-EMU 차체에 유지보수성이 좋은 고장력강(SMA570)재질의 프레임타입 하부구조를 적용하여 초기 K-EMU 차체대비 약 3.8% 경량화 된 하이브리드 차체를 도출하였다. 마지막으로 샌드위치 복합재를 하부구조와 지붕구조에 적용하여 초기 K-EMU 차체대비 약 30% 경량화 된 초경량 하이브리드 차체를 도출하였다. 도출된 차체 모델들은 모두 전동차 구조체 하중시험법을 만족하였다.

Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1093-1117
    • /
    • 2016
  • Global sensitivity analysis (GSA) has been widely used to investigate the sensitivity of the model output with respect to its input parameters. In this paper a new single-solution search optimization algorithm is developed based on the GSA, and applied to the size optimization of truss structures. In this method the search space of the optimization is determined using the sensitivity indicator of variables. Unlike the common meta-heuristic algorithms, where all the variables are simultaneously changed in the optimization process, in this approach the sensitive variables of solution are iteratively changed more rapidly than the less sensitive ones in the search space. Comparisons of the present results with those of some previous population-based meta-heuristic algorithms demonstrate its capability, especially for decreasing the number of fitness functions evaluations, in solving the presented benchmark problems.

마이크로 유전알고리듬의 최적설계 응용에 관한 연구 (Applications of Micro Genetic Algorithms to Engineering Design Optimization)

  • 김종헌;이종수;이형주;구본흥
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.158-166
    • /
    • 2003
  • The paper describes the development and application of advanced evolutionary computing techniques referred to as micro genetic algorithms ($\mu$GA) in the context of engineering design optimization. The basic concept behind $\mu$GA draws from the use of small size of population irrespective of the bit string length in the representation of design variable. Such strategies also demonstrate the faster convergence capability and more savings in computational resource requirements than simple genetic algorithms (SGA). The paper first explores ten-bar truss design problems to see the optimization performance between $\mu$GA and SGA. Subsequently, $\mu$GA is applied to a realistic engineering design problem in the injection molding process optimization.

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.