Browse > Article
http://dx.doi.org/10.12989/sss.2018.21.3.263

Improved thermal exchange optimization algorithm for optimal design of skeletal structures  

Kaveh, A. (Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology)
Dadras, A. (Department of Civil Engineering, Iran University of Science and Technology)
Bakhshpoori, T. (Faculty of Technology and Engineering, Department of Civil Engineering, East of Guilan, University of Guilan)
Publication Information
Smart Structures and Systems / v.21, no.3, 2018 , pp. 263-278 More about this Journal
Abstract
Thermal Exchange Optimization (TEO) is a newly developed algorithm which mimics the thermal exchange between a solid object and its surrounding fluid. In this paper, an improved version of the TEO is developed to fix the shortcomings of the standard version. To demonstrate the viability of the new algorithm, the CEC 2016's single objective problems are considered along with the discrete size optimization of benchmark skeletal structures. Problem specific constraints are handled using a fly-back mechanism. The results show the validity of the improved TEO method compared to its standard version and a number of well-known algorithms.
Keywords
improved thermal exchange optimization; metaheuristic; discrete structural optimization; optimum design; steel structures;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yeniay, O. (2005), "Penalty function methods for constrained optimization with genetic algorithms", Math. Comput. Appl., 10(1), 45-56.
2 Yi, T.H., Wen, K.F. and Li, H.N. (2016), "A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)", Smart Struct. Syst., 18(3), 425-448. doi:10.12989/sss.2016.18.3.425   DOI
3 Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P. and Qu, B. (2014), Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization, Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore, Tech. Rep.
4 Davison, J.H. and Adams, P.F. (1974), "Stability of braced and unbraced frames", J. Struct. Div., 100(2), 319-334.
5 Geem, Z.W., Kim, J.H. and Loganathan, G. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68.   DOI
6 Gholizadeh, S. (2013), "Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization", Comput. Struct., 125, 86-99. doi:10.1016/j.compstruc.2013.04.024   DOI
7 Kaveh, A. and Bakhshpoori, T. (2013), "Optimum design of space trusses using cuckoo search algorithm with levy flights. Iranian", J. Sci. Technol. T. Civil Eng., 37(1), 1-15.
8 Goldberg, D.E. and Samtani, M.P. (1986), Engineering optimization via genetic algorithm, Paper presented at the Electronic Computation:
9 Hasancebi, O. and Azad, S.K. (2015), "Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization", Comput. Struct., 154, 1-16. doi:https://doi.org/10.1016/j.compstruc.2015.03.014   DOI
10 Kaveh, A. (2017), Applications of metaheuristic optimization algorithms in civil engineering, Springer, Switzerland.
11 Kaveh, A. and Bakhshpoori, T. (2016), "An accelerated water evaporation optimization formulation for discrete optimization of skeletal structures", Comput. Struct., 177, 218-228. doi:https://doi.org/10.1016/j.compstruc.2016.08.006   DOI
12 Kaveh, A. and Khayatazad, M. (2012), "A new meta-heuristic method: Ray optimization", Comput. Struct., 112-113, 283-294. doi:https://doi.org/10.1016/j.compstruc.2012.09.003   DOI
13 Kaveh, A. and Dadras, A. (2017a), "A novel meta-heuristic optimization algorithm: Thermal exchange optimization", Adv. Eng. Softw., 110. 69-84   DOI
14 Kaveh, A. and Dadras, A. (2017b), "Structural damage identification using an enhanced thermal exchange optimization algorithm", Eng. Optimiz., 1-22. doi:10.1080/0305215X.2017.1318872   DOI
15 Kaveh, A. and Ilchi Ghazaan, M. (2015), "A comparative study of CBO and ECBO for optimal design of skeletal structures", Comput. Struct., 153, 137-147. doi:https://doi.org/10.1016/j.compstruc.2015.02.028   DOI
16 Kaveh, A. and Talatahari, S. (2012), "Charged system search for optimal design of frame structures", Appl. Soft Comput., 12(1), 382-393. doi:https://doi.org/10.1016/j.asoc.2011.08.034   DOI
17 Kaveh, A. and Mahdavi, V.R. (2014), "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, 18-27. doi:https://doi.org/10.1016/j.compstruc.2014.04.005   DOI
18 Kaveh, A. and Mahjoubi, S. (2017), "Design of multi-span steel box girder using lion pride optimization algorithm", Smart Struct. Syst., 20(15), 607-618.
19 Kaveh, A. and Talatahari, S. (2010), "Optimum design of skeletal structures using imperialist competitive algorithm", Comput. Struct., 88(21-22), 1220-1229. doi:https://doi.org/10.1016/j.compstruc.2010.06.011   DOI
20 Koumousis, V.K. and Georgiou, P.G. (1994), "Genetic algorithms in discrete optimization of steel truss roofs", J. Comput. Civil Eng., 8(3), 309-325.   DOI
21 Maheri, M.R. and Narimani, M. (2014), "An enhanced harmony search algorithm for optimum design of side sway steel frames", Comput. Struct., 136, 78-89.
22 Talbi, E.G. (2009), Metaheuristics: from design to implementation, John Wiley & Sons.
23 Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput.-Aided Des., 43(3), 303-315. doi:https://doi.org/10.1016/j.cad.2010.12.015   DOI
24 Rueda Torres, J. and Erlich, I. (2016), Solving the CEC2016 Real-Parameter Single Objective Optimization Problems through MVMO-PHM: Technical report.
25 Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102, 49-63.
26 Saka, M.P., Aydogdu, I., Hasancebi, O. and Geem, Z.W. (2011), Harmony Search Algorithms in Structural Engineering. (Eds., X.S. Yang and S. Koziel), Computational Optimization and Applications in Engineering and Industry (145-182), Berlin, Heidelberg: Springer Berlin Heidelberg.
27 Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: Theory and application", Adv. Eng, Softw., 105, 30-47.   DOI
28 Wang, B., Jin, X. and Cheng, B. (2012), "Lion pride optimizer: An optimization algorithm inspired by lion pride behaviour", Science China Inform. Sciences, 55(10), 2369-2389.   DOI
29 Wang, D., Wu, Z., Fei, Y. and Zhang, W. (2014), "Structural design employing a sequential approximation optimization approach", Comput. Struct., 134, 75-87. doi:https://doi.org/10.1016/j.compstruc.2013.12.004   DOI
30 Yang, J. and Soh, C.K. (1997), "Structural optimization by genetic algorithms with tournament selection", J. Comput. Civil Eng., 11(3), 195-200.   DOI
31 Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61.