• 제목/요약/키워드: and size optimization

Search Result 1,521, Processing Time 0.034 seconds

Optimization of Cutting Fluids for Environmentally Conscious Machining (환경친화적 기계가공을 위한 절삭유 최적화에 관한 연구)

  • Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.948-951
    • /
    • 2000
  • This paper presents the analytical and experimental methodology for the prediction of aerosol concentration and size distribution due to cutting fluid atomization mechanism in turnining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performed to know the particle size and evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

On the Acceleration of Redundancy Identification for VLSI Logic Optimization (VLSI 논리설계 최적화를 위한 Redundancy 조사 가속화에 관한 연구)

  • Lee, Seong-Bong;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.131-136
    • /
    • 1990
  • In this paper, new methods are proposed which speed up the logical redundancy identification for the gate-level logic optimization. Redundancy indentification, as well as deterministic test pattern generation, can be viewed as a finite space search problem, of which execution time depends on the size of the search space. For the purpose of efficient search, we propose dynamic head line and mandatory assignment. Dynamic head lines are changed dynamically in the process of the redundancy identification. Mandatory assignement can avoid unnecessary assignment. They can reduce the search size efficiently. Especially they can be used even though the circuit is modified in the optimization procedure, that is different from the test pattern generation methods. Some experimental results are presented indicating that the proposed methods are faster than existing methods.

  • PDF

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.

Optimization of a Piezoelectric Actuator using Bridge-Type Hinge Mechanism (브릿지형 힌지 메커니즘을 이용한 압전구동기의 최적화)

  • 김준형;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • In this research, a bridge-type flexure hinge mechanism is developed and optimized to amplify the displacement of a multilayer piezostack. Developed hinge mechanism has three-dimensional structure to reduce link size, so it have high amplification ratio with respect to small size. A flexure hinge is assumed to be 6 degree-of-freedom spring elements and matrix methods are used to model a hinge mechanism. To verify derived matrix model, a displacement and frequency experiments are performed. The analysis result shows that the displacemental error between matrix model and experiments is below 10 percents and the deformation of hinge in parasitic direction should be considered In hinge modeling. Using developed matrix model, an optimal design is performed to maximize the performance of hinge mechanism.

An Application of Micro-GA for the Design Optimization of Steel Box Girder Bridges (강상형교 설계최적화를 위한 마이크로 유전알고리즘의 적용)

  • 김제헌;류연선;김정태;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.154-161
    • /
    • 2001
  • A procedure of the design optimization for steel box girder bridges using micro genetic algorithms(μGA) is developed. The effect of population size is investigated and the efficiency and reliability of μGA is demonstrated in the optimum design of steel box girder bridges. Optimum design problems of steel box girder bridges are formulated, where tile design of concrete slab is based on the USD specifications and steel box girder based on LRFD respectively. Design of optimizations of single-span and 2-span steel box girder bridges are performed with the population size of 5, 40, 80, and 120, respectively The μGA-based optimum design of the 3-span steel box girder bridge is compared with SQP results.

  • PDF

Optimization of Condition of Chemical Additives in Cu CMP Slurry (Cu CMP 슬러리에서 화학첨가제 조건의 최적화)

  • Kim, In-Pyo;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.304-307
    • /
    • 2003
  • Replacement of aluminum by copper for interconnections in the semiconductor industry has raised a number of important issues. The integration of copper interconnection can be carried out by CMP(chemical mechanical polishing) is used to planarize the surface topography. In this experiments, we evaluated the optimization of several conditions for chemical additives during Cu CMP process. It was presented that the main cause of grown particle size is tartaric acid. The particle size was in inverse propotion to a quantity of bead and the time of milling process. The slurry stabilizer and oxidizer have been shown to have very good effect by addition in later milling process.

  • PDF

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.

Dynamic optimal design of an anthropomorphic robot manipulator (인체형 로봇 매니퓰레이터의 동역학적 최적설계)

  • 이상헌;이병주;광윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.82-87
    • /
    • 1994
  • In this study, dynamic optimal design far a two degree-of-freedom anthropomorphic robot module is performed. Several dynamic design indices associated with the inertia matrix and the inertia power array are introduced. Analysis for the relationship between the dynamic parameters and the design indices shows that trade-offs exist between the isotropy and the dynamic design indices related to the actuator size. A composite design index is employed to deal with multi-criteria based design with different weighting factors, in a systematic manner. We demonstrate the fact that dynamic optimization is another significant step to enhance the system performances, followed by kinematic optimization.

  • PDF

Optimal Design of Medical Bed Head Consol Considering the Strength Condition (의료용 베드 헤드 콘솔의 강도조건을 고려한 최적 설계)

  • Byon, Sung-Kwang;Choi, Ha-Young;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • Medical bed head consoles (BHC) are generally used to increase the efficiency of medical equipment and speed the medical treatment response time. The BHC design has been consistently improved including a movable shelf unit that is embedded to mount stably medical instruments on the lower part of the main console. The cost of a BHC can be reduced through design optimization to limit the overall weight. However, as the size of a head console might decrease due to design optimization, the BHC deflection could be increased. In this study, multi-objective optimal design was adopted to consider this BHC design problem. In order to reduce the cost of optimization planning, an approximate model was applied for the design optimization. In the context of approximate optimization, we used the response surface method and non-dominant sorting genetic algorithm developed from various fields. Multi-objective optimal solutions were also compared with a single objective optimal design.