• Title/Summary/Keyword: and resonance

Search Result 10,515, Processing Time 0.033 seconds

The Designing of an Air-gap Type FBAR Filter using Leach Equivalent Model

  • Choi, Hyung-Wook;Jung, Joong-Yeon;Lee, Seung-Kyu;Park, Yong-Seo;Kim, Kyung-Hwan;Shin, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.196-203
    • /
    • 2006
  • An air-gap type FBAR was designed using Leach equivalent model for analyzing a vertical structure of the FBAR. For the top electrode, Pt, and the bottom electrode, Au, of $1.2{\mu}m$ thickness and the piezoelectric of 0.8,urn thickness, the resonance and anti-resonance occurred at 2.401 GHz and 2.460 GHz, respectively. $S_{11}$ was increased and $S_{21}$ was decreased as the resonance area of FBAR was widened. We observed the characteristics of insertion loss, bandwidth and out-of-band rejection of ladder-type FBAR BPF by changing resonance areas of series and shunt resonators and by adding stages. As the resonance area of series resonator was increased, insertion loss was improved but out-of-band rejection was degraded. And as the resonance area of shunt resonator was increased, insertion loss was degraded a little but out-of-band rejection was improved even without adding stages. We, also, changed the shape of the resonance area from square shape to rectangle shape to examine the effects of the resonator shape on the characteristics of the BPF. The best performances were observed when the sizes of series and shunt resonator are $150{\mu}m{\times}l50{\mu}m\;and\;5{\mu}m{\times}50{\mu}m$, respectively. Out-of-band rejection was improved about 10dB and bandwidth was broadened from 30MHz to 100MHz utilizing inductor tuning on $2{\times}2\;and\; 4{\times}2$ ladder-type BPFs.

Molecular Dynamics of the C-Terminal Domain Mouse CDT1 Protein

  • Khayrutdinov, Bulat I.;Bae, Won-Jin;Kim, Jeong-Ju;Hwang, Eun-Ha;Yun, Young-Mi;Ryu, Kyoung-Seok;Cheong, Hae-Kap;Kim, Yu-Gene;Cho, Yun-Je;Jeon, Young-Ho;Cheong, Chae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • The backbone molecular dynamics of the C-terminal part of the mouse Cdt1 protein (tCdt1, residues 420-557) was studied by high field NMR spectroscopy. The Secondary structure of this protein was suggested by analyzing of chemical shift of backbone atoms with programs TALOS and PECAN, together with NOE connectivities from 3D $^{15}N-HSQC-NOESY$ data. Measurement of dynamic parameters $T_1,\;T_2$ and NOE and limited proteolysis experiment provided information for domain organization of tCdt1(420-557). Analysis of the experimental data showed that the C-terminal part of the tCdt1 has well folded domain for residues 455-553. The residues 420-453 including ${\alpha}-helix$ (432-441) are flexible and probably belong to other functional domain in intact full length Cdt1 protein.

  • PDF

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

Resonance Characteristics of Fruits in Packaging System for Parcel Delivery Service (택배용 포장시스템이 적용된 과실의 공진특성)

  • Jung, Hyun Mo;Kim, Su Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2015
  • Fruit and vegetables are subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to customers using parcel delivery service, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serous fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonance frequencies of the fruit and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. Instrumentation and technologies are described for determining the vibration response characteristics of the fruits with frequency range 3 to 150 Hz. The resonance frequency of the pear ranged from 53 to 102 Hz and the amplitude at resonance was between 1.08 and 2.48 G. The resonance frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity

  • Omer, Ahmed;Mohany, Atef;Hassan, Marwan
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.91-107
    • /
    • 2016
  • Flow-excited acoustic resonance in ducted cavities can produce high levels of acoustic pressure that may lead to severe damage. This occurs when the flow instability over the cavity mouth, which is created by the free shear layer separation at the upstream edge, is coupled with one of the acoustic modes in the accommodating enclosure. Acoustic resonance can cause high amplitude fluctuating acoustic loads in and near the cavity. Such acoustic loads could cause damage in sensitive applications such as aircraft weapon bays. Therefore, the suppression and mitigation of these resonances are very important. Much of the work done in the past focused on the fluid-dynamic oscillation mechanism or suppressing the resonance by altering the edge condition at the shear layer separation. However, the effect of the downstream edge has received much less attention. This paper considers the effect of the impingement edge geometry on the acoustic resonance excitation and Strouhal number values of the flow instabilities in a ducted shallow cavity with an aspect ratio of 1.0. Several edges, including chamfered edges with different angles and round edges with different radii, were investigated. In addition, some downstream edges that have never been studied before, such as saw-tooth edges, spanwise cylinders, higher and lower steps, and straight and delta spoilers, are investigated. The experiments are conducted in an open-loop wind tunnel that can generate flows with a Mach number up to 0.45. The study shows that when some edge geometries, such as lower steps, chamfered, round, and saw-tooth edges, are installed downstream, they demonstrate a promising reduction in the acoustic resonance. On the other hand, higher steps and straight spoilers resulted in intensifying the acoustic resonance. In addition, the effect of edge geometry on the Strouhal number is presented.

Analysis for Vibration Characteristics of the Watermelon for Optimum Packaging Design in Domestic Distribution (국내 유통 수박의 적정 포장설계를 위한 진동특성 분석)

  • Jung, Hyun-Mo;Kim, Man-Soo;Kim, Ghi-Seok;Cho, Byeong-Kwan;Kim, Dae-Yong
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.2
    • /
    • pp.97-102
    • /
    • 2006
  • Shock and vibration inputs are transmitted from the transporting vehicle through the packaging to the fruit. The vibration causes sustained bouncing of fruits against each other and the container wall. The steady state vibration input may cause serous fruit injury, and the damage is particularly severe if the fruits are bounced at its resonance frequency. The determination of the resonance frequencies of the fruits and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruits, and to understand the complex interaction between the components of the fruits when they relate to expected transportation vibration inputs. To analyze the vibration properties of the watermelon for optimum packaging design during transportation, sinusoidal sweep vibration tests were carried out. The resonance frequency of the watermelon ranged from 19 to 32 Hz and the amplitude at resonance was between 1.6 and 2.9 G. The resonance frequency and amplitude at resonance frequency band of the watermelon decreased with the increase of the sample mass. The multiple nonlinear regression equation for predicting the resonance frequency of the watermelon were developed using the independent variables such as mass, input acceleration and sphericity.

  • PDF

Study on EMTP Simulation Applying Dual Reactor for Prevention of the Ferro-resonance and VT Burnout in Substation System

  • Kim, Seok-kon;An, Yong-ho;Jang, Byung-tae;Choi, Jong-kee;Lee, Nam-ho;Han, Jung-yeol;Lee, You-jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • When the line and switchgear of the substation system are disconnected, ferro-resonance can occur. This happens even if the capacitive reactance and inductive reactance are not equal, which are not common resonance conditions. Resonance conditions vary depending on the busbar configuration environment. Although the damping resistance method applying the existing saturable reactor to cope with ferro-resonance has been successfully applied on site, there can be loss of normal function during long-term operation. The reason is because the rise in the operating frequency of saturable reactors means the saturation number is increased. Therefore, it can no longer function as saturable reactor since the resistor having inadequate capacity is burned out. To address this problem, in this paper, an EMTP-based simulation test was performed by designing and applying a dual reactor method, which adds an extended divergence reactor to the 1st side of the VT. The test result confirms that when the divergence reactor is inserted, the voltage and current values obtained at the 1st side and 2nd side of the VT as well as current values of divergence reactor part were stabilized from the transient phenomena and return to normal values. When compared with existing measures, although this method is similar in adding having a reactor added to a system regarding ferro-resonance, it has the advantage of being able to prevent ferro-resonance in advance since the reactor is added before the system is saturated. In addition, because it does not use damping resistance, it can extend the equipment life and stabilize its operation. Therefore, there are a lot of differences in terms of its operating characteristics and achivement of goal between the conventional method and new divergence reactor method.

The study on the wave-resonance for the bio-KI (생체(生體) 기(氣)의 파동(波動) 공명적(共鳴的)인 연구(硏究) 현황(現況))

  • Kim Gyeong-Cheul;Hong Mi-Suk
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.152-162
    • /
    • 2000
  • The present condition of study on the wave-resonance for the bio-KI is observed. The results are as follows: 1. Tn the wave-resonant stand point, the tendency of studying on KI is showed in the several field all over the world. 2. Because it is originated radionics, the wave-resonant tools of MRA insistenting minute-magnetism-resonance-apparatus need the more severe data in the side of electric circuit. 3. The wave resonance apparatus according to the frequency occurance transmits low-frequency's vibration ratio to the electric stimulating aspect. 4. The wave-water is considered on the application of wave-resonance transcription on the water, and needs the comprehension of torsion-field level.

  • PDF

Experimental Results of Thermoacoustic Resonance Heat Generation (음향 공진 열 발생에 대한 실험 결과)

  • Bae, Jong Yeol;Seo, Seonghyeon;Kang, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.730-733
    • /
    • 2017
  • An ignitor for the initiation of burning propellants becomes one of the most critical components for the operation of liquid rocket engines. The important phenomenon of the igniter is thermoacoustic resonance. This paper mainly includes experimental results on thermoacoustic resonance phenomenon from distance between nozzle and resonance tube. The ultimate goal is to develop an ignitor capable of multiple ignitions based on research results about the usage of the thermoacoustic resonance phenomenon.

  • PDF

A Debate on the Use of Presaturation Method in NMR for Structure Determination of Polypeptides in $H_2O$

  • Lee, Chulhyun;Yi, Gwan-Su;Kim, Eun-Hee;Lee, Jo-Woong;Chagjoon Cheong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.21-29
    • /
    • 1997
  • Three typical solvent suppression methods employed for measuring the NOE data that are used for structure determination of polypeptides by modeling were discussed and compared with one another. In the experiments with several peptides composed of 10 to 65 amino acids the presaturation method was found to give severely distorted signal intensities of exchangeable protons, thus making the results based on this method much less reliable.

  • PDF