• Title/Summary/Keyword: and quality assurance measurement system

Search Result 79, Processing Time 0.037 seconds

A Quality Assurance Study for the Application of Cook/chill System in School Foodservice Operation (I) - Broiled Spanish Mackerel - (학교급식에 Cook/chill system 적용을 위한 품질보증연구(I) - 삼치구이 -)

  • Kwak, Tong-Kyung;Moon, Hye-Kyung;Park, Hye-Won;Hong, Wan-Soo;Ryu, Kyung;Chang, Hye-Ja;Kim, Sung-Hee;Choi, Eun-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.278-293
    • /
    • 1998
  • The purposes of this study were to develop Hazard Analysis Critical Control Point-based standardized recipe applicable to cook/chilled Broiled Spanish Mackerel in school foodservice operations and to establish reasonable shelf-life limits by assessing food quality during chilled storage period of 5 days. HACCP for the production of menu items was identified in simulation study. At each critical control point, time-temperature profile was recorded and microbiological analysis was done. Also chemical analyses and sensory evaluation were conducted for 5 days of chilled storage. The results of time-temperature measurement of Broiled Spanish Mackerel by each production phase showed satisfactory condition that met the standards. Broiled Spanish Mackerel showed excellent microbiological quality from raw ingredient phase ($TPC:2.58{\pm}0.12\;Log\;CFU/g$) to holding phase ($TPC:2.70{\pm}0.42\;Log\;CFU/g$). Coliform (0.84 Log MPN/g) and fecal coliform (0.84 Log MPN/g) were detected from marinating phase ($TPC:3.82{\pm}0.52\;Log\;CFU/g$). After heating, only few mesophiles were detected ($TPC:1.83{\pm}0.49\;Log\;CFU/g$). No psychrophiles, coliforms and fecal coliforms were detected. In the phases after rapid chilling, during chilled storage and after reheating and distribution, almost none of the above microbes were detected. Salmonella and Listeria monocytogenes were not detected in all production phases. The pH immediately after cooking was 6.65 and then increased significantly to 6.81 on the third day of chilled storage (p<0.001). Acid value did not show significant changes while total volatile based nitrogen (TVBN) dramatitically increased during storage periods (p<0.01). In the result of sensory evaluation, general acceptability points had been rated high in the first day of storage, and then, the points were decreased significantly on the third day (p<0.05). General acceptability points ranged from 8.86 to 10.68. Accordingly, Broiled Spanish Mackerel is highly recommendable cook/chill system. Considering the DHSS standards for storage, the ideal shelf-life recommended for Broiled Spanish Mackerel is within 4 days excluding cooking day. For Broiled Spanish Mackerel, critical control points were purchasing and receiving of frozen Spanish Mackerel, heating, chilling, chilled storage, reheating and distribution.

  • PDF

Acceptance Testing and Commissioning of Robotic Intensity-Modulated Radiation Therapy M6 System Equipped with InCiseTM2 Multileaf Collimator

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • This work reports the acceptance testing and commissioning experience of the Robotic Intensity-Modulated Radiation Therapy (IMRT) M6 system with a newly released $InCise^{TM}2$ Multileaf Collimator (MLC) installed at the Yonsei Cancer Center. Acceptance testing included a mechanical interdigitation test, leaf positional accuracy, leakage check, and End-to-End (E2E) tests. Beam data measurements included tissue-phantom ratios (TPRs), off-center ratios (OCRs), output factors collected at 11 field sizes (the smallest field size was $7.6mm{\times}7.7mm$ and largest field size was $115.0mm{\times}100.1mm$ at 800 mm source-to-axis distance), and open beam profiles. The beam model was verified by checking patient-specific quality assurance (QA) in four fiducial-inserted phantoms, using 10 intracranial and extracranial patient plans. All measurements for acceptance testing satisfied manufacturing specifications. Mean leaf position offsets using the Garden Fence test were found to be $0.01{\pm}0.06mm$ and $0.07{\pm}0.05mm$ for X1 and X2 leaf banks, respectively. Maximum and average leaf leakages were 0.20% and 0.18%, respectively. E2E tests for five tracking modes showed 0.26 mm (6D Skull), 0.3 mm (Fiducial), 0.26 mm (Xsight Spine), 0.62 mm (Xsight Lung), and 0.6 mm (Synchrony). TPRs, OCRs, output factors, and open beams measured under various conditions agreed with composite data provided from the manufacturer to within 2%. Patient-specific QA results were evaluated in two ways. Point dose measurements with an ion chamber were all within the 5% absolute-dose agreement, and relative-dose measurements using an array ion chamber detector all satisfied the 3%/3 mm gamma criterion for more than 90% of the measurement points. The Robotic IMRT M6 system equipped with the $InCise^{TM}2$ MLC was proven to be accurate and reliable.

A Comparison of coincidence between the Light field & the Radiation field using film and BIS (필름과 BIS 영상장치를 이용한 광/방사선조사야 일치성 비교평가)

  • Bang, Dong-Wan;Seok, Jin-Yong;Jeong, Yun-Ju;Choi, Byeong-Don;Park, Jin-Hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.33-41
    • /
    • 2004
  • Purpose : Film has been the primary tool in coincidence testing between the light field and the radiation field, which constitutes the quality assurance list of a linear accelerator. But there is a great chance of errors being different among the observer when using film. Thus this study set out to use the BIS(Beam Image System) in addition to film in comparing and evaluating coincidence results between the two fields and in searching for the improvement measures. Materials & Methods : Photon beam of 6 and 15MV was exposed to film and the BIS using a linear accelerator. The light and radiation fields were each $50{\times}50,\;100{\times}100,\;and\;200{\times}200mm^2$. The gantry angle was $0^{\circ}$ when using film and $0^{\circ}\;and\;270^{\circ}$ when using the BIS. The devices adopted to test coincidence between the two fields were a ruler and film scanner when using film. With the BIS, the width of the scanned light and radiation fields was measured for errors with setting the X and Y axis. Results : The visual measurements of the observer with film resulted that the radiation field was bigger than the light field and that their maximum error was 1.9mm. The results were the same with the measurements using the film scanner except for the average error, which was less than 1.9mm. On the contrary, the measurements using the BIS showed that the light field was bigger than the radiation field at the gantry angle of $0^{\circ}\;and\;270^{\circ}$. The maximum error was 0.96mm, and the error range was $<{\pm}2mm$ both in the X and Y axis. The average error of ${\Delta}X$, Y was the smallest in the order of the visual film measurements, film scanner measurements, and BIS measurements Conclusion . This requires a careful measurement for accurate quality assurance since errors are much different according to each observer that tests coincidence between visual fields with film. And an observer needs to use another image device or develop a measuring device of his own if it seems necessary for accurate measurements.

  • PDF

Feasibility of Two Dimensional Ion Chamber Array for a Linac Periodic Quality Assurance (선형가속기의 품질관리를 위한 2차원이온전리함배열의 유용성)

  • Lee, Jeong-Woo;Hong, Se-Mie;Park, Byung-Moon;Kang, Min-Young;Kim, You-Hyun;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Aim of this study is to investigate the feasibility of 2D ion chamber array as a substitute of the water phantom system in a periodic Linac QA. For the feasibility study, a commercial ion chamber matrix was used as a substitute of the water phantom in the measurement for a routine QA beam properties. The device used in this study was the I'm RT MatriXX (Wellhofer Dosimetrie, Germany). The MatriXX consists of a 1,020 vented ion chamber array, arranged in $24{\times}24\;cm^2$ matrix. Each ion chamber has a volume of $0.08\;cm^3$, spacing of 0.762 cm. We investigated dosimetric parameters such as dose symmetry, energy ($TPR_{20,10}$), and absolute dose for comparing with the water phantom data with a Farmer-type ionization chamber (FC65G, Wellhofer Dosimetrie, Germany). For the MatriXX measurements, we used the white polystyrene phantom (${\rho}:\;1.18\;g/cm^3$) and also considered the intrinsic layer (${\rho}:\;1.06\;g/cm^3$, t: 0.36 cm) of MatriXX to be equivalent to water depth. In the preliminary study of geometrical QA using MatriXX, the rotation axis of collimator and half beam junction test were included and compared with film measurements. Regarding the dosimetrical QA, the MatriXX has shown good agreements within ${\pm}1%$ compared to the water phantom measurements. In the geometrical test, the data from MatriXX were comparable with those from the films. In conclusion, the MatriXX is a good substitute for water phantom system and film measurements. In addition, the results indicate that the MatriXX as a cost-effective novel QA tool to reduce time and personnel power.

  • PDF

Dosimetric Characterization of an Ion Chamber Matrix for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료 선량분포 확인을 위한 2차원적 이온전리함 배열의 특성분석)

  • Lee, Jeong-Woo;Hong, Se-Mie;Kim, Yon-Lae;Choi, Kyoung-Sik;Jung, Jin-Beom;Lee, Doo-Hyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • A commercial ion chamber matrix was examined the characteristics and its performance for radiotherapy qualify assurance. The device was the I'mRT 2D-MatriXX (Scanditronix-Wellhofer, Schwarzenbruck, Germany). The 2D-MatriXX device consists of a 1020 vented ion chamber array, arranged in $24{\times}24cm^2$ matrix. Each ion chamber has a volume of $0.08cm^3$, spacing of 0.762 cm and minimum sampling time of 20 ms. For the investigation of the characteristics, dose linearity, output factor, short-term reproducibility and dose rate dependency were tested. In the testing of dose linearity. It has shown a good signal linearity within 1% in the range of $1{\sim}800$cGy. Dose rate dependency was found to be lower than 0.4% (Range: 100-600 Mu/min) relative to a dose rate of 300 Mu/min as a reference. Output factors matched very well within 0.5% compared with commissioned beam data using a ionization chamber (CC01, Scanditronix-Wellhofer, Schwarzenbruck, Germany) in the range of field sizes $3{\times}3{\sim}24{\times}24cm^2$. Short-term reproducibility (6 times with a interval of 15 minute) was also shown a good agreement within 0.5%, when the temperature and the pressure were corrected by each time of measurement. in addition, we compared enhanced dynamic wedge (EDW, Varian, Palo Alto, USA) profiles from calculated values in the radiation planning system with those from measurements of the MatriXX. Furthermore, anon-uniform IMRT dose fluence was tested. All the comparison studies have shown good agreements. In this study, the MatriXX was evaluated as a reliable dosimeter, and it could be used as a simplistic and convenient tool for radiotherapy qualify assurance.

  • PDF

MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance (세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가)

  • Park, So-Yeon;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.

Assessment of the usefulness of the Machine Performance Check system that is an evaluation tools for the determination of daily beam output (일간 빔 출력 확인을 위한 평가도구인 Machine Performance Check의 유용성 평가)

  • Lee, Sang Hyeon;Ahn, Woo Sang;Lee, Woo Seok;Choi, Jin Hyeok;Kim, Seon Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.65-73
    • /
    • 2017
  • Purpose: Machine Performance Check (MPC) is a self-checking software based on the Electronic Portal Imaging Device (EPID) to measure daily beam outputs without external installation. The purpose of this study is to verify the usefulness of MPC by comparing and correlating daily beam output of QA Beamchecker PLUS. Materials and Methods: Linear accelerator (Truebeam 2.5) was used to measure 10 energies which are composed of photon beams(6, 10, 15 MV and 6, 10 MV-FFF) and electron beams(6, 9, 12, 16 and 20 MeV). A total of 80 cycles of data was obtained by measuring beam output measurement before treatment over five months period. The Pearson correlation coefficient was used to evaluate the consistency of the beam output between the MPC and the QA Beamchecker PLUS. In this study, if the Pearson correlation coefficient is; (1) 0.8 or higher, the correlation is very strong (2) between 0.6 and 0.79, the correlation is strong (3) between 0.4 and 0.59, the correlation is moderate (4) between 0.2 and 0.39, the correlation is weak (5) lower than 0.2, the correlation is very weak. Results: Output variations observed between MPC and QA Beamchecker PLUS were within 2 % for photons and electrons. The beam outputs variations of MPC were $0.29{\pm}0.26%$ and $0.30{\pm}0.26%$ for photon and electron beams, respectively. QA Beamchecker PLUS beam outputs were $0.31{\pm}0.24%$ and $0.33{\pm}0.24%$ for photon and electron beams, respectively. The Pearson correlation coefficient between MPC and QA Beamchecker PLUS indicated that photon beams were very strong at 15 MV, and strong at 6 MV, 10 MV, 6 MV-FFF and 10 MV-FFF. For electron beams, the Pearson correlation coefficient were strong at 16 MeV and 20 MeV, moderate at 9 MeV and 12 MeV, and very weak at 6 MeV. Conclusion: MPC showed significantly strong correlation with QA Beamchecker PLUS when testing with photon beams and high-energy electron beams in the evaluation of daily beam output, but the correlation when testing with low-energy electron beams (6 MeV) appeared to be low. However, MPC and QA Beamchecker PLUS are considered to be suitable for checking daily beam output, as they performed within 2 % of beam output consistency during the observation. MPC which can perform faster than the conventional daily beam output measurement tool, is considered to be an effective method for users.

  • PDF

Evaluation of 3DVH Software for the Patient Dose Analysis in TomoTherapy (토모테라피 환자 치료 선량 분석을 위한 3DVH 프로그램 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.201-207
    • /
    • 2015
  • The new function of 3DVH software for dose calculation inside the patient undergoing TomoTherapy treatment by applying the measured data obtained by ArcCHECK was recently released. In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated by the comparison of measured dose distribution with the dose calculated using 3DVH. The 2D diode detector array MapCHECK phantom was used for the TomoTherapy planning of virtual patient and for the measurement of the compared dose. The average pass rate of gamma evaluation between the measured dose in the MapCHECK phantom and the recalculated dose in 3DVH was $92.6{\pm}3.5%$, and the error was greater than the average pass rate, $99.0{\pm}1.2%$, in the gamma evaluation results with the dose calculated in TomoTherapy planning system. The error was also greater than that in the gamma evaluation results in the RapidArc analysis, which showed the average pass rate of $99.3{\pm}0.9%$. The evaluated accuracy of 3DVH software for TomoTherapy DQA process in this study seemed to have some uncertainty for the clinical use. It is recommended to perform a proper analysis before using the 3DVH software for dose recalculation of the patient in the TomoTherapy DQA process considering the initial application stage in clinical use.