• Title/Summary/Keyword: and photometry

Search Result 500, Processing Time 0.029 seconds

THE BRIGHTEST STARS IN GALAXIES AS DISTANCE INDICATORS

  • LYO A-RAN;LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.27-70
    • /
    • 1997
  • The brightest stars in galaxies have been used as distance indicators since Hubble. However, the accuracy of the brightest stars for distance estimates has been controversial. Recently, Rozanski & Rowan-Robinson [1994 : MNRAS, 271, 530] argued large errors of this method for the distance determination : 0.58 mag and 0.90 mag, respectively, for the brightest red stars and the brightest blue stars, while Karachentsev & Tikhonov [1994 : A&A, 286, 718] suggested much smaller errors in the distance determination than the former: 0.37 mag for the brightest red stars and 0.46 mag for the brightest blue stars. The reasons for these conflicting results are not yet known. In this study we have investigated the accuracy of this method using a sample of 17 galaxies for which Cepheid distances are known and reliable photometry of the brightest stars are available. We have obtained the calibrations of the relations between the mean luminosities of the three blue and red brightest supergiants (BSGs and RSGs, respectively) and the total luminosities of the parent galaxies: $= 0.21M_B^T- 3.84, \sigma(M_v) = 0.37 mag,\;and\;\delta_{\mu0}=0.47$ mag for the brightest red supergiants, and $= 0.30M_B^T -3.02, \sigma(M_B)\;=\;0.55 mag,\;and\; \delta_{\mu0}=0.79mag$ for the brightest blue supergiants. Also it is found that the errors in the distance determination are reduced by a factor of two, as the observing wavelengths increase from B-band to K-band. In conclusion, the brightest red supergiants are considered to be useful for determining the distances to resolved late-type galaxies.

  • PDF

Intra-night optical variability of AGN in COSMOS field

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Kim, Dohyeong;Jun, Hyunsung David;Lee, Joon Hyeop;Pallerola, Mar Mezcua
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2017
  • Optical variability is one way to probe the nature of the central engine of AGN at smaller linear scales, and previous studies have shown that optical variability of AGN is more prevalent at longer timescales and at shorter wavelengths. To understand the properties and physical mechanism of variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Especially, we investigated intra-night variability of AGN with KMTNet data which observed COSMOS field during 3 separate nights from 2015 to 2016 in B, V, R, and I bands. Each night was composed of 5, 9, and 11 epochs with 20-30 min cadence. To find AGN in the COSMOS field, we applied multi-wavelength selection methods. Using X-ray, mid-infrared, and radio selection methods, 50-60, 130-220, 20-40 number of AGN are detected, respectively. Achieving photometric uncertainty ~0.01mag by differential photometry, we employed a standard time-series analysis tool to identify variable AGN, chi-square test. Preliminary results indicate that there is no evidence of intra-night optical variability of AGN. It is possible that previous studies discovered intra-night variability used inappropriate photometric error. However, main reason seems that our targets have fainter magnitude (higher photometric error) than that of previous studies. To discover variability of AGN, we will investigate longer timescale variability of AGN.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

Development of an AutoFlat program for the acquisition of effective flat images in the automated observation system

  • Yoon, Joh-Na;Kim, Yonggi;Kim, Dong-Heun;Yim, Hong-Suh
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • The purpose of this study is to develop an observation program for obtaining effective flat images that are necessary for photometric observation. The development of the program was achieved by improving the existing method for obtaining twilight flat images. The existing method for obtaining twilight flat images acquires flat images by observing the sky light after sunset or light before sunrise. The decision of when to observe flat images at each night is solely dependent on the judgment of an observer, and thus the obtained flat images for particular nights may not be clean. Especially, in the case of the observatories where an automated observation system is in operation, there is a difficulty that an observer should pay attention during sunrise and sunset in order to obtain flat images. In this study, a computer program is developed to improve this inconvenience and to efficiently perform photometric observation in the observatories where an automated observation system is applied. This program can obtain flat images by calculating the time for obtaining flat images automatically and the exposure time using a numerically calculated function. When obtaining twilight flat images at dusk and at dawn, the developed program performs automated observation and provides effective flat images by acquiring appropriate exposure time considering the sunrise and sunset times that vary depending on the day of observation. The code for performing this task was added to Obs Tool II (Yoon et al. 2006), which is the automated observation system of the Chungbuk National University Observatory, and the usefulness of the developed program was examined by performing an actual automated observation. If this program is applied to other observatories where automated observation is in operation, it is expected that stable and high-quality flat images could be obtained, which can be used for the pre-processing of photometric observation data.

INTRA-NIGHT OPTICAL VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD WITH THE KMTNET

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Choi, Changsu;Kim, Dohyeong;Jun, Hyunsung D.;Lee, Joon Hyeop;Mezcua, Mar
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.89-110
    • /
    • 2018
  • Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$-test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.

TRGB Distances to Type Ia Supernova Host Galaxies in the Leo I Group and the Hubble Constant

  • Jang, In Sung;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2013
  • Type Ia supernovae (SNe Ia) are a powerful tool to investigate the expansion history of the universe, because their peak luminosity is as bright as a galaxy and is known as an excellent standard candle. Since the discovery of the acceleration of the universe based on the observations of SNe Ia, higher than ever accuracy of their peak luminosity is needed to investigate various problems in cosmology. We started a project to improve the accuracy of the calibration of the peak luminosity of SNe Ia by measuring accurate distances to nearby resolved galaxies that host SNe Ia. We derive accurate distances to the SN Ia host galaxies using the method to measure the luminosity of the tip of the red giant branch (TRGB). In this study we present the results for M66 and M96 in the Leo I Group which are nearby spiral galaxies hosting SN 1989B and SN 1998bu, respectively. We obtain VI photometry of resolved stars in these galaxies from F555W and F814W images in the Hubble Space Telescope archive. We derive the distances to these galaxies from the luminosity of the TRGB. With these results we derive absolute maximum magnitudes of two SNe (SN 1989B in M66 and SN 1998bu in M96). We derive a value of the Hubble constant from the optical magnitudes of these SNe Ia and SN 2011fe in M101 based on our TRGB analysis. This value is similar to the values derived from recent estimates from WMAP9 and Planck results, but smaller than other recent determinations based on Cepheid calibration for SNe Ia luminosity.

  • PDF

PHOTOMETRIC SOLUTIONS OF W UMA TYPE STARS: GSC2576-0319 AND GSC2584-1731 (W UMa형 식쌍성 GSC2576-0319와 GSC2584-1731의 측광해)

  • Lee, Chung-Uk;Lee, Jae-Woo;Jin, Ho;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2006
  • High-precision photometric observations were performed in BVI bandpasses using Am robotic telescope at Mt. Lemmon Observatory for two binary stars, which are reclassified as W UMa-type systems from ROTSE(Robotic Optical Transient Search Experiment) follow-up observations and show peculiar light variations. In order to analyze W UMa-type eclipsing binaries systematically, the light curve analysis script using 2005 version of Wilson-Devinney binary code is constructed. The orbital inclinations of GSC2S84-1731 and GSC2576-0319 are $43.^{\circ}5\;and\;57.^{\circ}6$ from light-curve analysis, respectively. Spot model is applied to explain the asymmetric light curve for GSC2S84-1731 and the spot parameters are derived.

Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

  • Andronov, Ivan L.;Kim, Yonggi;Kim, Young-Hee;Yoon, Joh-Na;Chinarova, Lidia L.;Tkachenko, Mariia G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E. For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination $i=90^{\circ}$, $M_1=0.745M_{\odot}$, $M_2=0.854M_{\odot}$, $M=M_1+M_2=1.599M_{\odot}$, the orbital separation $a=1.65{\cdot}10^9m=2.37R_{\odot}$ and relative radii $r_1=R_1/a=0.314$ and $r_2=R_2/a=0.360$. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

SH 2-128, AN H II AND STAR FORMING REGION IN AN UNLIKELY PLACE

  • BOHIGAS JOAQUIN;TAPIA MAURICIO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.285-288
    • /
    • 2004
  • Near-infrared imaging photometry supplemented by optical spectroscopy and narrow-band imaging of the H II region Sh 2-128 and its environment are presented. This region contains a developed H II region and the neighboring compact H II region S 128N associated with a pair of water maser sources. Midway between these, the core of a CO cloud is located. The principal ionizing source of Sh 2-128 is an 07 star close to its center. A new spectroscopic distance of 9.4 kpc is derived, very similar to the kinematic distance to the nebula. This implies a galactocentric distance of 13.5 kpc and z = 550 pc. The region is optically thin with abundances close to those predicted by galactocentric gradients. The $JHK_s$ images show that S 128N contains several infrared point sources and nebular emission knots with large near-infrared excesses. One of the three red Ks knots coincides with the compact H II region. A few of the infrared-excess objects are close to known mid- and far-infrared emission peaks. Star counts in J and $K_s$ show the presence of a small cluster of B-type stars, mainly associated with S 128N. The $JHK_s$ photometric properties together with the characteristics of the other objects in the vicinity suggest that Sh 2-128 and S 128N constitute a single complex formed from the same molecular cloud, with ages ${\~}10^6$ and < $3 {\times} 10^5$ years respectively. No molecular hydrogen emission was detected at 2.12 ${\mu}m$. The origin of this remote star forming region is an open problem.

THE BIMA PROJECT: O-C DIAGRAMS OF ECLIPSING BINARY SYSTEMS

  • HAANS, G.K.;RAMADHAN, D.G.;AKHYAR, S.;AZALIAH, R.;SUHERLI, J.;IRAWATI, P.;SAROTSAKULCHAI, T.;ARIFIN, Z.M.;RICHICHI, A.;MALASAN, H.L.;SOONTHORNTHUM, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • The Eclipsing Binaries Minima (BIMA) Monitoring Project is a CCD-based photometric observational program initiated by Bosscha Observatory - Lembang, Indonesia in June 2012. Since December 2012 the National Astronomical Research Institute of Thailand (NARIT) has joined the BIMA Project as the main partner. This project aims to build an open-database of eclipsing binary minima and to establish the orbital period of each system and its variations. The project is conducted on the basis of multisite monitoring observations of eclipsing binaries with magnitudes less than 19 mag. Differential photometry methods have been applied throughout the observations. Data reduction was performed using IRAF. The observations were carried out in BVRI bands using three different small telescopes situated in Indonesia, Thailand, and Chile. Computer programs have been developed for calculating the time of minima. To date, more than 140 eclipsing binaries have been observed. From them 71 minima have been determined. We present and discuss the O-C diagrams for some eclipsing binary systems.