• Title/Summary/Keyword: and nano-template

Search Result 150, Processing Time 0.049 seconds

A Study on Improved Pore Uniformity of Nano Template Using the Rapid Thermal Processor (급속열처리를 통한 알루미나 나노템플릿의 기공 균일도 개선에 관한 연구)

  • Kim, Dong-Hee;Kim, Jin-Kwang;Kwon, O-Dae;Yang, Kea-Joon;Lee, Jae-Hyeong;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.637-638
    • /
    • 2005
  • AAO templates were fabricated using a two-step anodization process with pretreatment such as electro polishing and annealing. To reduce process time and get well-aligned pore array, rapid thermal processor by an halogen lamp was employed in vacuum state at $500^{\circ}C$ for various time. The pore array of AAO template annealed at $500^{\circ}C$ for 2 h is comparable to a template annealed in conventional furnace at $500^{\circ}C$ for 30 h. The well-fabricated AAO template has the mean pore diameter of 70 nm, the barrierlayer thickness of 25 nm, and the pore depth of $9{\mu}m$. And the pore density can be as high as $2.0\times10^{10}cm^{-2}$.

  • PDF

High Luminescence Properties of YPV nano size phosphors by a Liquid Phase Precursor Method

  • Jo, D.S.;Dulda, A.;Masaki, T.;Yoon, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1293-1296
    • /
    • 2009
  • The synthesis of nano-size ($Y_{0.955}Eu_{0.1}$)($P_{0.7}V_{0.45}$)$O_4$ red phosphors were conducted by using a Liquid Phase Precursor (LPP) method. In this method, cellulose pulp was used as a template showing the micro fibre structures to obtain the nano size YPV red phosphor. Aqueous solutions of raw materials were impregnated into cellulose pulp and subsequently impregnated pulp was dried and fired at $800-1200^{\circ}C$ for 1h. The effect of luminescence properties on compositions and temperatures was evaluated with photoluminescence spectrum, X-ray diffraction and FE-SEM, and TEM. High efficiency (~110%) of phosphor of size of ~500nm fired at $1150^{\circ}C$ was obtained compared with the micro size of commercial product. High efficiency behaviors of nano size phosphors were discussed in this paper.

  • PDF

Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate (나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작)

  • Park, Yong Min;Seo, Sang Hyun;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

Comparison of Enantioselective CEC Separation of OT-MIP Capillary Columns with Templates of Various Camphor Derivatives Made by the Pre-established General Preparation Protocol

  • Zaidi, Shabi Abbas;Lee, Seung-Mi;Lee, Ju-Young;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2934-2938
    • /
    • 2010
  • Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns with templates of camphor derivatives such as 10-camphorsulfonic acid (10-CSA), 10-camphorsulfonamide (10-CS) and camphor-p-tosyl hydrazone (CTH) have been successfully prepared by the prior generalized preparation protocol. The three MIP thin layers of different templates showed quite different morphologies. The chiral selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The optimization conditions were found to be different for the three MIPs. This work suggests prospective successful extension of the generalized preparation protocol for OT-MIP silica capillary columns toward templates of a variety of chemical groups.

Electrochemical Template Synthesis of Conducting Polymer Microstructures at Addressed Positions (템플레이트의 국소 위치에 형성된 전도성 고분자 미세구조물의 전기화학 합성)

  • Lee Seung Hyoun;Suh Su-Jeong;Yun Geum-Hee;Son Yongkeun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • The nano or micro sized structures of conducting polymer had been prepared by synthesizing the desired polymer within the pores of template of nano or micro porous membrane filter. In this study, we had tried to fabricate conducting polymer microstructures on an electrode by using electrochemical deposition adopting template synthesis. Our attention was focused on two different things, attaching template on the electrode and fabricating microstructures only at limited areas of the electrode. A conducting polymer, PEDiTT (poly 3,4-ethylenedithi-athiophene) solution was blended with PVA(polyvinyl alcohol) solution and used as an conducting adhesive. After attaching template membrane, the electrode were immersed in 0.5M pyrrole in 0.1M KCI solution, and electrochemical polymerization was performed. The growth process of the microstructures studied by SEM. The electrochemical fabrication of conducting polymer was performed by using two-electrode system. A large working electrode and a micro scale disc electrode were used for the confined area synthesis. Polymerization potential was 4V in an electrolytic solution made of KCI in deionized water. The optimum polymerization conditions were, i.e. (4V/100sec) for $250{\mu}m$ electrode and (6V/30 sec) for $10{\mu}m$ electrode.

Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels

  • Moon, Cheol-Whan;Kim, Youngjoo;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.57-61
    • /
    • 2014
  • In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide ($CO_2$) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of $800^{\circ}C$(CA-K-800), $900^{\circ}C$(CA-K-900), and $1000^{\circ}C$(CA-K-1000), and their surface and pore characteristics along with the $CO_2$ adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to $900^{\circ}C$, the total pore volume and specific surface area sharply increased from 1.2165 to $1.2500cm^3/g$ and 1281 to $1526m^2/g$, respectively. However, the values for both these parameters decreased at temperatures above $1000^{\circ}C$. The best $CO_2$ adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on $CO_2$ adsorption behaviors.

Fabrication of Free-Standing Three-Dimensional Block Copolymer Patterns on Substrate (블록 공중합체 3차원 패턴의 제조 방법 및 그 구조 특성)

  • Choi, Hong Kyoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.804-811
    • /
    • 2019
  • As the importance of three-dimensiona (3D) nano patterns and structures has recently emerged, interest in the study of 3D structures of block copolymers has increased. However, most existing studies on block copolymer 3D patterns on substrates are limited to simple 3D structures such as a multi-layered forms. In this study, we propose an experimental method for realizing free-standing 3D block copolymer patterns on substrates using an e-beam lithographic template and film transfer method. The block copolymer 3D structure formed in wide hole templates are similar to simple multi-layered structures; however, as the width of the hole template become narrower, more complex block copolymer 3D structures are formed in which the upper and lower layer structures are interconnected. Furthermore, we introduce a method to fabricate novel block copolymer structures in which the 2D planar structures are connected to 3D complex structures. Proposed 3D block copolymer fabrication method provides a framework for generation of unconventional 3D structures of block copolymer, which can be useful for next generation 3D devices.