• Title/Summary/Keyword: and molding depth

Search Result 64, Processing Time 0.023 seconds

A Study on Sink Mark of Injection Molded Products (사출성형부품의 싱크마크에 관한 연구)

  • 서윤수;김영호;임동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.811-814
    • /
    • 1997
  • The injection molding process has been developed as a very important technology for the automotive and electric industries in recent years. But, in the injection molding products with rib-web structures, partial deformation by thermal volumetric shrinkage called Sink Mark, is occurred. In this study, to make explicitly characteristics of sink mechanism, an experimental approach was taken by using multi T-shaped mold cavity and FEM simulation. As a result, pressure on the packing process and the rib thickness are the most effective on sink mark depth. On the other hand, melt temperature has no effect on sink mark depth fot the same rib thickness.

  • PDF

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.60-63
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth.

  • PDF

A Study on Sink Marks in Injection Molding of Boss Parts (보스부분 사출성형의 싱크마크 발생에 관한 연구)

  • Kim, Hyun-Pil;Kim, Yong-Jo
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Supplementary features in injection molded products, which are boss, rib and snap fit, are mainly located in the products. These features might make molding flow improper in injection processing and consequently give rise to some of molding troubles such as short shot and hesitation. The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the closed boss height. The volumetric shrinkage is affected by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase flow rate to a boss part and causes the sink mark depth to increase. As the molding thickness and the closed boss height in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink marks generated in the boss part of injection molded products.

  • PDF

Micro Structure Fabrication Using Injection Molding Method (인젝션 몰딩 기술을 이용한 마이크로 구조물 성형)

  • Je T. J.;Shin B. S.;Chung S. W.;Cho J. W.;Park S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

A study on the blood collecting device of main shaft injection molding for measuring blood glucose by CAE analysis (혈당 측정을 위한 채혈기구 메인 샤프트의 사출성형 시뮬레이션 및 시 사출에 관한 연구)

  • Baek, Seung Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In diabetics, daily blood glucose testing is generally required at home, and thus, performing blood collection several times a day using a blood line is essential. Blood collection in the home and in the hospital is a source of pain and is the second most common cause of infection. In blood collecting device generally consists of four major parts: inner-case, outer case, main shaft and triger, and the most import part among those for necessary functionality is the main shaft. Filling time and injection pressure, filling balance, strain-rate analysis of change based on availability of the product. The Moldflow of FEM simulation is used for the analysis of injection molding process. In this study, aims to create a technique for injection molding and manufacturing of a main shaft of a high-performance blood-collecting apparatus capable of automatically extracting a lancet to relieve pain through depth control of the lancet.

Realation of Injection Temperature and Weld-quality in Injection Molding (사출 성형 시 수지온도와 웰드품질과의 관계)

  • Noh, Keon-Cheol;Lee, Gyu-Ho;Jang, Min-Kyu;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.27-30
    • /
    • 2015
  • The injection molding is used in more than 70% of total production of plastic products. Weld line in injection molded part is one of the defects in injection molding process. Weld line deteriorates not only appearance quality but also mechanical property. In this study, tensile strength about material such as ABS, PP, PA and PS was tested. as the results, the first result appears that weld's strength retention ratio's are 0.90, 0.84, 0.85, 0.76 and the second result apeears that weld depth decrease as processing temperature increased.

  • PDF

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF