• Title/Summary/Keyword: and elasticity

Search Result 3,194, Processing Time 0.026 seconds

Modified Modulus of Elasticity of Concrete Column with Steel Bars (철근을 고려한 콘크리트 기둥의 수정탄성계수)

  • Yoon, Dong-Yong;Song, Hyung-Soo;Jang, Won-Seok;Min, Chang-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.101-111
    • /
    • 2005
  • In this study, it is investigated the modified modulus of elasticity of the reinforced concrete columns including the longitudinal reinforcing steels as well as the confinement effect of the core concrete due to the transverse reinforced steel through the literature reviews. Equations are derived in order to evaluate the modified modulus of elasticity for the reinforced compressive concrete including the confinement effect. The finite element analysis for the 20 story reinforced concrete building is undertaken as a case study depending on the steel ratio and modulus of elasticity, and the analysis results are discussed.

An Analysis of Relationship between R&D Policies and Firm R&D Expenditures: Focused on R&D Subsidies and Tax Incentives (R&D 지원제도와 기업 R&D 지출액간 관계 분석: 정부 R&D 보조금과 세제혜택을 중심으로)

  • Suh Kyoo-Won;Lee Chang-Yang
    • Journal of Technology Innovation
    • /
    • v.14 no.1
    • /
    • pp.101-118
    • /
    • 2006
  • The relationship between R&D Polices(R&D subsidy, tax incentives) and firm R&D expenditures is analyzed through firm's profit maximization function. As a result, the relationship between R&D policies and fmn R&D expenditures is determined by the relationship between firm R&D expenditures and market price. In case of major innovation which cause the fall of market price, the elasticity R&D subsidy and firm R&D expenditures is negative(substitution). In case of minor innovation which cause the rise of market price, the elasticity R&D subsidy and firm R&D expenditures is positive(complement). Tax incentives is bring about the increase of firm R&D expenditures. R&D subsidy and tax incentives are substitutively influenced at firm R&D expenditures.

  • PDF

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Equivalent stiffness method for nonlinear analysis of stay cables

  • Xia, G.Y.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.661-667
    • /
    • 2011
  • In the famous equivalent elasticity modulus method proposed by Ernst for the geometrical nonlinear analysis of stay cables, the cable shape was assumed as a parabolic curve, and only a part of the gravity load normal to the chord was taken into account with the other part of gravity load parallel to the chord being ignored. Using the actual catenary curve and considering the entire gravity load of stay cables, the present study has derived the equivalent stiffness method to analyze the sag effect of stay cables in cable-stayed bridges. The derived equivalent stiffness can be degenerated into Ernst's equivalent elasticity modulus method with some approximations. Therefore, the Ernst's method is a special and approximate formulation of the present method. The derived equivalent stiffness provides a theoretical explanation for the famous Ernst's formula.

An Analysis of the Consumption Expenditure Structure for Leisure and Recreational Service in Urban Households (도시 가계의 여가오락서비스 소비지출구조 및 영향요인분석)

  • 김영숙;심미영
    • Korean Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.131-143
    • /
    • 2004
  • The purpose of this study was to examine the consumption expenditure structure for leisure & recreational service in urban households. For these purpose, the data collected 175 households in Pusan metropolitan city. Statistics employed for the analys were frequencies, means, one -way ANDVA, and multiple regression analysis. The major results of this study were as follows; Average monthly expenditure for leisure, recreational service was 190,342 won. And their expenditure for leisure & recreational service share was 12.89 % of total expenditure. Those expenditure with high income elasticity were hobby & culture education, and journey. And those with low income elasticity were play & inspection, and health & sports. In leisure & recreational service expenditure, the variables which influence were job and degree of household head, and income.

  • PDF

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

Experimental Analysis of the Damper of a Loudspeaker (스피커 댐퍼의 실험적 분석)

  • 최도성;이성수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.192-196
    • /
    • 2004
  • A decision of the modulus of elasticity is made by using the degree of bending strength of materials for loudspeaker damper and the radius of corrugation lines and the radius of curvature of each corrugation as a geometrical element. And it is compared with experimental measurements. As a result. the elasticity of damper is proportional to the degree of bending strength and inversely proportional to the radius of corrugation lines and inversely proportional to the square of the radius of curvature. We made a small loudspeaker using a modified damper which take the form of inner small curvature and outer large curvature of each corrugation. This loudspeaker have the increased sensitivity in high frequency and also in low frequency region.

Compressive Strength Characteristics of Concrete Using in Crushed Sand (혼합모래를 사용한 콘크리트의 강도 특성)

  • Baek Dong Il;Youm Chi Sun;Kim Myung Sik;Kim Jong Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • Crushed sand is blended in order to investigate the quality changes and characteristics of concrete with variation of blend ratio of crushed sand (50, 60, 70, 80, 90, $100\%$). Slump and air content were measured to investigate properties of fresh concrete, and unit weight, compressive strength and modulus of elasticity in age of 7, 28, 60, 90, 180 days were measured to investigate properties of hardened concrete. Compressive strength, unit weight and modulus of elasticity were increased as time goes by and they are expected to keep on increasing in long-term age as well. As a result of measuring compressive strength and modulus of elasticity in age of 7, 28, 60, 90, 180days, compressive strength was highest when it is $70\%$ of blended ratio.

  • PDF