• 제목/요약/키워드: and damping constant

검색결과 276건 처리시간 0.024초

압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어 (Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode)

  • 홍성룡;최승복
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.

증기 공동현상이 발생하는 무한 소폭 스퀴즈 필름 댐퍼 성능과 오일 공급압력의 영향 (The Effect of Oil Supply Pressure on the Performance of Vapor Cavitated Short Squeeze Film Dampers)

  • 정시영
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.147-153
    • /
    • 2008
  • The effect of oil supply pressure on the performance of vapor cavitated short squeeze film dampers is examined. Vapor cavitation is characterized by film rupture occurring as a result of evaporating oils. The pressure of vapor cavity in the film is almost zero in absolute pressure and nearly constant. Pan's model about the shape of vapor cavity is utilized for studying the effect of vapor cavitation on the damping capability of a short squeeze film damper. As the level of oil supply pressure is increasing, vapor cavitation is suppressed so that the direct damping coefficient increases and the cross coupled damping coefficient decreases. Futhermore, the analysis of the unbalance responses of a rigid rotor supported on cavitated squeeze film dampers shows that a significant reduction in rotor amplitude and force transmissibility is possible by controlling the oil supply pressure into short squeeze film dampers.

Dynamic Analysis on the Closing Resistors of Gas Insulated Switchgear

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1607-1613
    • /
    • 2006
  • GIS (Gas Insulated Switchgear) is used in electric power system to insure non conductivity, breaking capacity and operating reliability. In the present study, dynamic analysis on the closing resistors of the GIS has bees carried out by the commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS. In order to find the minimum value of chatter vibration of closing resistors, the motion of moving and fixed resistor parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed resistor parts. The simulated results were compared with experimental results. The application of the results could reduce chatter vibration of closing resistors of the GIS. These data are also useful on the development of future model GIS with minimum chatter vibration for the determinations of the spring constant, the damping coefficient and mass of a moving part.

가스절연 개폐장치 투입저항의 동특성 해석 (Dynamic Characteristics Analysis of Closing Resistors of Gas Insulated Switchgear)

  • 조해용;이성호;임성삼;이기정;김민우
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.104-110
    • /
    • 2005
  • GIS(Gas Insulated Switchgear) is used in electric power system, to insure non conductivity, breaking capacity and operating reliability. The commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS were used to simulate dynamic analysis of the closing resistors of the GIS in this paper. To reduce chatter vibration of closing resistors, the motion of moving and fixed parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed parts. The simulated results were compared with experimental results. As a result, chatter vibration of closing resistors of the GIS could be reduced by using the results. These data can be used to determine the spring constant, the damping coefficient and mass of a moving part to reduce chatter vibration when the next model is developed.

종동력을 받는 이중진자의 혼돈운동 연구 (Chaotic Behavior of a Double Pendulum Subjected to Follower Force)

  • 장안배;이재영
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

동특성을 고려한 스프레더용 충격흡수기의 시스템 변화에 따른 최적설계 (The Optimum Design according to System Variation of Impact Absorbing System for Spreader Considering Dynamic Characteristic)

  • 안찬우;홍도관;김동영;한근조
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.230-237
    • /
    • 2003
  • On this study, we operated the dynamic response for impact load of impact absorbing system for spreader by the finite element analysis and showed respectively the spring constant and the damping coefficient which the reaction force by impact was the lowest value for three types impact absorbing system according to the change of system, also we presented the change of impact reaction force according to the spring constant and the damping coefficient. Additionally, among the three types impact absorbing system according to the change of system, the reaction force of model II was the lowest value and the next model which has higher value than model II was model Iand model III has the highest value in the three types.

공진형 선형 액추에이터의 감쇄지수 변화에 따른 과도 응답특성 (Transient Response of a linear actuator with a damping ratio)

  • 우병철;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1037-1039
    • /
    • 2004
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We was studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power.

  • PDF

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.

플로팅 슬래브궤도와 일반 콘크리트궤도 접속부에서의 열차 및 궤도의 거동 분석 (Analysis of Behavior of Train and Track at Transition Zone between Floating Slab Track and Conventional Concrete Slab Track)

  • 장승엽;양신추;박만호;조수익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.379-384
    • /
    • 2009
  • It is of great importance to assure the running safety and ride comfort in designing the floating slab track for the mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety and ride comfort, and then, the behavior of train and track at the transition zone between the floating slab track and the conventional concrete slab track according to several main design variables such as spring constant, damping coefficient, spacing and arrangement of isolators and slab length, using the dynamic analysis technique considering the train-track interaction. The results of numerical analysis demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the vertical vibration acceleration of the train body, wheel-rail interaction force, rail bending stress and uplift force. The increase becomes higher with the decrease of the spring constant of isolators and the increase of the isolator spacing, but the damping ratio does not significantly affect the behavior of train and track at the transition. Therefore, to assure the running safety and ride comfort, simultaneously increasing the effectiveness of vibration isolation, it is effective to minimize the relative vertical offset between the floating slab and the conventional track slab by adjusting the spring constant and spacing of isolators at the transition.

  • PDF