• 제목/요약/키워드: and chemical pre-treatment

검색결과 362건 처리시간 0.026초

ICP-CVD 방법으로 합성된 탄소 나노튜브의 구조적 물성 및 전계방출 특성에 촉매의 전처리 공정이 미치는 영향 (Effects of catalyst pretreatment on structural and field emissive properties of carbon nanotubes synthesized by ICP-CVD method)

  • 홍성태;박창균;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1862-1864
    • /
    • 2005
  • Carbon nanotubes [CNTs] are grown on TiN-coated Si substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Pre-treatment of Ni catalysts has been performed using an RF magnetron sputtering system. Structural properties and field-emission characteristics of the CNTs grown are analyzed in terms of the RF power applied and the treatment time used in the pre-treatment process. The characterization using various techniques, such as FE-SEM, AFM, and Raman spectroscopy, show that the physical dimension as well as the crystal quality of CNTs are changed by pre-treatment of Ni catalysts. It is also seen that Ni catalysts with proper grain size and uniform surface roughness may produce much better electron emission. The physical reason for all the measured data obtained are discussed to establish the relationship between the structural property and the electron emission characteristic of CNTs.

  • PDF

Mechanisms of Platelet Adhesion on Elastic Polymer Surfaces: Protein Adsorption and Residence Effects

  • Insup Noh;Lee, Jin-Hui
    • Macromolecular Research
    • /
    • 제9권4호
    • /
    • pp.197-205
    • /
    • 2001
  • Platelet adhesion onto elastic polymeric biomaterials was tested in vitro by perfusing human whole blood at a shear rate of 100 sec$\^$-1/ for possible verification of mechanisms of initial platelet adhesion perfusion of blood on the polymeric substrates was performed after treatments either with or without pre-adsorption of 1% blood plasma, and either with or without residence of the protein-preadsorbed substrate in phosphate buffered solution. The surfaces employed were elastic polymers such as poly(ether urethane urea), poly(ether urethane), silicone urethane copolymer, silicone rubber and poly(ether urethane) with the anti-calcifying agent hydroxyethane bisphosphate. Each polymer surface treated was exposed in vitro to the dynamic, heparinized whole blood perfused for upto 6 min and the surface area of platelets initially adhered was measured by employing in situ epifluorescence video microscopy. The blood perfusion was performed on the surfaces treated at the following three different conditions: directly on the bare surfaces, after protein pre-adsorption and after residence in buffer for 3 days of the surfaces protein pre-adsorbed for 2 h. The effects of blood plasma pre-adsorption on the initial platelet adhesion was surface-dependent. The amount of the adsorbed fibrinogen and the surface coverage area of the adhered platelets were dependent on the surface conditions whether substrates were bare surfaces or protein pre-adsorbed ones. To test an effect of possible morphological (re)orientations of the adsorbed proteins on the initial platelet adhesion, the polymeric substrate pre-adsorbed with 1% blood plasma was immersed in phosphate buffered solution for 3 days and then exposed to physiological blood perfusion. The surface area of the platelets adhered on these surfaces was significantly different from that of the surfaces treated with protein pre-adsorption only. These results indicated that platelet adhesion was dependent on the surface property itself and pre-treatment conditions such as blood perfusion without any pre-adsorption of proteins, and blood perfusion either after protein pre-adsorption or after subsequent substrate residence in buffer of the substrate pre-adsorbed with proteins. Understanding of these results may guide for better designs of blood-contacting materials based on protein behaviors.

  • PDF

고해, 니딩, 습부압착에 의한 HwBKP, SwBKP, OCC 수초지의 건조 거동 및 물성 변화 (Changes of HwBKP, SwBKP, OCC Handsheets' Drying Behavior and Physical Properties by Refining, Kneading and Wet Pressing)

  • 이진호;박종문
    • 펄프종이기술
    • /
    • 제43권5호
    • /
    • pp.17-26
    • /
    • 2011
  • Drying behavior and physical properties of HwBKP, SwBKP, and OCC handsheets depending on kneading, refining and wet pressing were analyzed. The maximum drying shrinkage velocity was newly adopted to verify the effect of mechanical treatment of pulps by evaluating drying behavior according to varying the kneading, refining and wet pressing treatments. Those various treatments were changed to evaluate the relationship between the maximum drying shrinkage velocity and handsheets properties. When the drying shrinkage and the maximum drying velocity increased by refining and wet-pressing, handsheets strength was increased. The maximum drying shrinkage velocity showed higher correlation with physical properties of paper than WRV at different refining loads at SwBKP and mixed pulp. At high wet-web dryness, drying shrinkage, the maximum drying shrinkage velocity and strength properties of handsheet were increased. It meant that drying shrinkage behavior was highly affected by not only fibers' shrinkage but also fiber bonding. Kneading pre-treatment for KOCC and SwBKP effectively modified fiber properties and increasing paper strength and drying shrinkage. The effect of kneading pre-treatment was also confirmed by the maximum drying shrinkage velocity. Strength properties of mixed pulp handsheets were not increased by the kneading pre-treatment, although the maximum drying shrinkage velocity and WRV was increased. It meant that fibers network bonding of HwBKP was limited because of ves sels and ray cells' interference for bonding. Therefore in order to improve paper strengths containing HwBKP by mechanical treatments, interference of vessels and ray cells for fiber bondings should be carefully controlled.

Effect of Carbon Nanotube Pre-treatment on Dispersion and Electrical Properties of Melt Mixed Multi-Walled Carbon Nanotubes / Poly(methyl methacrylate) Composites

  • Park Won Ki;Kim Jung Uyun;Lee Sang-Soo;Kim Junkyung;Lee Geon-Woong;Park Min
    • Macromolecular Research
    • /
    • 제13권3호
    • /
    • pp.206-211
    • /
    • 2005
  • Multi-walled carbon nanotubes (MWNTs) pre-treated by concentrated mixed acid or oxidized at high temperature were melt mixed with poly(methyl methacrylate) (PMMA) using a twin screw extruder. The morphologies and electrical properties of the MWNT/PMMA composites were investigated. The thermally treated MWNTs (t-MWNTs) were well dispersed, whereas the acid treated MWNTs (a-MWNTs) were highly entangled, forming large-sized clusters. The resulting electrical properties of the composites were analyzed in terms of the carbon nanotube (CNT) dispersion. The experimental percolation threshold was estimated to be $3 wt\%$ of t-MWNTs, but no percolation occurred at similar concentrations in the a-MWNT composites, due to the poor dispersion in the matrix.

지르코니아 코어와 전장용 세라믹의 결합 강도에 대한 표면 처리 방법 평가 (Evaluation of surface treatment methods on the bond strength of veneer ceramic to the zirconia core)

  • 이광영;홍민호
    • 대한치과기공학회지
    • /
    • 제42권3호
    • /
    • pp.213-219
    • /
    • 2020
  • Purpose: This study aimed to identify the impact of physical surface roughing with a polishing tool onto the pre-sintering yttria-stabilized tetragonal zirconia polycrystals (TZP) core and liner treatment for chemical bonding on the bond strength of TZP core and veneering ceramic. Methods: Overall, 80 specimens were classified into two groups (non-liner, NL; and usingliner, UL ) depending on the use of liner, and these two groups were then subclassified into four groups depending on the polishing tool used. (1) Non-liner groups: NS, non-liner+stone point; NC, non-liner+carbide bur; NP, non-liner+paper cone point; NT, non-liner+silicon point. (2) Using-liner groups: US, using-liner+stone point; UC, using-liner+carbide bur; UP, usingliner+paper cone point; UT, using-liner+silicon point. The pre-sintering surface roughing values and shapes were observed, and after burning up the veneering ceramic, the shear bond strength was measured using a universal testing machine. For significance testing, a one-way analysis of variance and Tukey's multiple comparison test were conducted. An optical microscope was used to observe the fracture plane, and the following results were obtained. Results: Surface roughness NP (4.09±0.51 ㎛) represented a higher value than other groups (p<0.001). In shear bond strength, NS (35.21±1.44 MPa) of the NL group showed the highest bond strength (p<0.001). The UL group did not show a statistically significant difference between groups (p=0.612). Conclusion: Our study findings reveal that the bond strength of TZP core and veneering ceramic was improved by pre-sintering physical surface treatment than by chemical bonding with liner surface treatment.

극한환경 MEMS용 2 inch 3C-SiC 기판의 직접접합 특성 (Direct Bonding Characteristics of 2 inch 3C-SiC Wafers for MEMS in Hash Environments)

  • 정연식;류지구;김규현;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.387-390
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS(micro electro mechanical system) fields because of its application possibility in harsh environments. This paper presents pre-bonding techniques with variation of HF pre-treatment conditions for 2 inch SiC wafer direct bonding using PECVD(plasma enhanced chemical vapor deposition) oxide. The PECVD oxide was characterized by XPS(X-ray photoelectron spectrometer) and AFM(atomic force microscopy). The characteristics of the bonded sample were measured under different bonding conditions of HF concentration and an applied pressure. The bonding strength was evaluated by the tensile strength method. The bonded interface was analyzed by using IR camera and SEM(scanning electron microscope). Components existed in the interlayer were analyzed by using FT-IR(fourier transform infrared spectroscopy). The bonding strength was varied with HF pre-treatment conditions before the pre-bonding in the range of $5.3 kgf/cm^2$ to $15.5 kgf/cm^2$

  • PDF

Study on Recycling of Scraps from Process of Silicon-single-crystal for Semiconductor

  • Lee, Sang-Hoon;Lee, Kwan-Hee;Hiroshi Okamoto
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.705-710
    • /
    • 2001
  • So for the quartz-glassy crucible wastes which was used for pulling up silicon-single-crystal ingot have simply reused for refractory raw-materials, or exhausted. This study is concerned on the advanced recycling-technology that is obtained by the proper micro-particle preparation process in order to fabricate fine amorphous silica filler for EMC (Epoxy Molding Compound). Therefore, this paper will deal with the physical, chemical and thermal pre-treatment process for efficient impurity removal and with the proper micro-particle process for producing the amorphous silicafiller. In view of the results, if the chemical, physical and thermal pre-treatment process for efficient elimination of impurity was passed, the purity of wasted fused glassy crucible is almost equal to the its of first anhydrous quartz glass. Thus, it was understood that this wasted fused glassy crucible was sufficient value of recycling, though it was damaged. When the ingot was fabricated, Phase transformation of crystallization by heat treatment (heat hysteresis phenomenon) was not changed. So, it was understood that as fused silica in the amorphous state, as It is, recycling possibility was very high

  • PDF

하수슬러지의 초음파 전처리를 통한 가용화 및 혐기성 생분해도 향상 (Improvement of Solubilization and Anaerobic Biodegradability for Sewage Sludge Using Ultrasonic Pre-treatment)

  • 이채영;박승용
    • 유기물자원화
    • /
    • 제16권3호
    • /
    • pp.83-90
    • /
    • 2008
  • 하수슬러지의 초음파 전처리시 용존성 유기물의 증가와 혐기성 생분해도 향상을 평가하였다. 하수슬러지의 초음파에 의한 가용화는 세포벽의 파괴로 인하여 용해성 화학적 산소요구량, 단백질 및 탄수화물의 농도 증가와 입자크기를 감소시켰다. 혐기성 생분해도 측면에서초음파 전처리는 메탄가스 발생량을 증가시켜 혐기성 생분해를 향상시키는 것으로 나타났다. 하수슬러지의 생화학적 메탄 잠재 발생량 실험결과 초음파 전처리 후 슬러지의 최종 메탄 수율은 294.3 ml $CH_4/gVS$로 나타나 전처리를 하지 않은 경우 211.3 ml $CH_4/gVS$에 비해 약 40 % 향상된 값을 보였다. 이와 같은 결과를 고려 시 하수슬러지의 가용화는 혐기성 생분해도 향상에 효과적인 것으로 나타났다.

  • PDF

Effect of a Multi-Step Gap-Filling Process to Improve Adhesion between Low-K Films and Metal Patterns

  • Lee, Woojin;Kim, Tae Hyung;Choa, Yong-Ho
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.427-429
    • /
    • 2016
  • A multi-step deposition process for the gap-filling of submicrometer trenches using dimethyldimethoxysilane (DMDMOS), $(CH_3)_2Si(OCH_3)_2$, and $C_xH_yO_z$ by plasma enhanced chemical vapor deposition (PECVD) is presented. The multi-step process consisted of pre-treatment, deposition, and post-treatment in each deposition step. We obtained low-k films with superior gap-filling properties on the trench patterns without voids or delamination. The newly developed technique for the gap-filling of submicrometer features will have a great impact on inter metal dielectric (IMD) and shallow trench isolation (STI) processes for the next generation of microelectronic devices. Moreover, this bottom up gap-fill mode is expected to be universally for other chemical vapor deposition systems.

의료용 폴리우레탄 Pre-polymer의 중합공정 최적화 (Process Optimization of Polyurethane Pre-polymer for Medical Application)

  • 허광태;구양;하만경;곽재섭
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, the modern society in development and industrial growth is investing a lot of time and much effort to improvement and environment of life quality. Thus, the casting tape which uses environmentally friendly and human body friendly water hardening process Polymer is rapidly substituted for the gypsum cast product which has been plentifully used in medical treatment. Until currently, prior researches have a tendency to focusing the analysis about chemical creation expense and reaction quality rather than the issue about optimization of the process for this polymerization. In the polymerization process which has been accomplished with actual same chemical creation expense, there has been a problem which is the possibility of getting a different result. This is because the optimization of respectively control factors is not accomplished which affect at polymerization process. Therefore, this research sees the chemical qualities of casting tape Polymer, consequently selects the polymerization process which is suitable. And, by using a experimental design, this research will evaluate the affects which the respective factors have on remaining NCO and viscosity. futhermore, this research will carry out the process optimization which can get the above results.

  • PDF