• Title/Summary/Keyword: and Time-Difference-of-Arrival

Search Result 295, Processing Time 0.031 seconds

Real-Time Sound Localization System For Reverberant And Noisy Environment (반향음과 잡음 환경을 고려한 실시간 소리 추적 시스템)

  • Kee, Chang-Don;Kim, Ghang-Ho;Lee, Taik-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.258-263
    • /
    • 2010
  • Sound localization algorithm usually adapts three step process: sampling sound signals, estimating time difference of arrival between microphones, estimate location of sound source. To apply this process in indoor environment, sound localization algorithm must be strong enough against reverberant and noisy condition. Additionally, calculation efficiency must be considered in implementing real-time sound localization system. To implement real-time robust sound localization system we adapt four low cost condenser microphones which reduce the cost and total calculation load. And to get TDOA(Time Differences of Arrival) of microphones we adapt GCC-PHAT(Generalized Cross Correlation-Phase Transform) which is robust algorithm to the reverberant and noise environment. The position of sound source was calculated by using iterative least square algorithm which produce highly accurate position data.

A study imitating human auditory system for tracking the position of sound source (인간의 청각 시스템을 응용한 음원위치 추정에 관한 연구)

  • Bae, Jeen-Man;Cho, Sun-Ho;Park, Chong-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.878-881
    • /
    • 2003
  • To acquire an appointed speaker's clear voice signal from inspect-camera, picture-conference or hands free microphone eliminating interference noises needs to be preceded speaker's position automatically. Presumption of sound source position's basic algorithm is about measuring TDOA(Time Difference Of Arrival) from reaching same signals between two microphones. This main project uses ADF(Adaptive Delay Filter) [4] and CPS(Cross Power Spectrum) [5] which are one of the most important analysis of TDOA. From these analysis this project proposes presumption of real time sound source position and improved model NI-ADF which makes possible to presume both directions of sound source position. NI-ADF noticed that if auditory sense of humankind reaches above to some specified level in specified frequency, it will accept sound through activated nerve. NI-ADF also proposes practicable algorithm, the presumption of real time sound source position including both directions, that when microphone loads to some specified system, it will use sounds level difference from external system related to sounds of diffraction phenomenon. In accordance with the project, when existing both direction adaptation filter's algorithm measures sound source, it increases more than twice number by measuring one way. Preserving this weak point, this project proposes improved algorithm to presume real time in both directions.

  • PDF

An Onboard Multilateration system for Efficient Air Traffic Management (효율적인 항공교통관리를 위한 Onboard Multilateration 시스템)

  • Cho, Tae-Hwan;Song, In-Seong;Jang, Eun-Mee;Yoon, Wan-Oh;Choi, Sang-Bang
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In the next generation of ATM, ADS-B(Automatic Dependent Surveillance-Broadcast) and multilateration are the main technology recommended by ICAO(International Civil Aviation Organization). However, there are a lot of non-equipped ADS-B aircraft today. Therefore, TIS-B(Traffic Information Service-Broadcast) provides traffic information, which has obtained from radars for non-equipped ADS-B aircraft. In this paper, we presented an onboard multilateration system for non-equipped ADS-B aircraft using SSR(Secondary Surveillance Radar) signal instead of TIS-B. TIS-B has a lot of error because of using radar data, but multilateration has less error than radar because of using TDOA(Time Difference of Arrival) method. Results of performance analysis show that the position accuracy is improved by the proposed method using on-board multilateration.

Location error analysis of a real time locating system in a multipath environment (다중경로 환경에서 실시간 위치추적 시스템의 위치 오차 분석)

  • Myong, Seung-Il;Mo, Sang-Hyun;Lee, Heyung-Sub;Park, Hyung-Rae;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper, we analyze the location accuracy of real-time locating systems (RTLS) in multipath environments, where the RTLS complies with an ISO/IEC 24730-2 international standard. RTLS readers should have an ability not only to recover the transmitted signal but also provide arrival timing information from the received signal. In the multipath environments, in general, the transmitted signal goes through both direct and indirect paths, and then it becomes some distorted form of the transmitted signal. Such multipath components have a critical effect on deciding the first arrival timing of the received signal. To analyze the location error of the RTLS in the multipath environments, we assume two multipath components without considering an additive white Gaussian noise. Through the simulation and real test results, we confirm that the location error does not occur when the time difference between two paths is more than 1.125Tc, but the location error of about 2.4m happens in case of less than 0.5Tc. In particular, we see that the resolvability of two different paths depends largely on the phase difference for the time difference of less than 1Tc.

Dam Failure and Unsteady Flow Analysis through Yeoncheon Dam Case(II) - Unsteady Flow Analysis of Downstream by Failure Scenarios - (연천댐 사례를 통한 댐 파괴 부정류해석 및 하류 영향 검토(II) -시나리오에 따른 댐 하류 부정류 해석 및 범랑특성 연구-)

  • Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1295-1305
    • /
    • 2008
  • This study aims at the analyze of unsteady downstream flow due to dam failure along dam failure scenario and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-RAS simulation model. The boundary conditions of this unsteady flow simulation are that dam failure arrival time could be at 02:45 a.m. August 1st 1999 and failure duration time could be also 30 minutes. Downstream 19.5 km from dam site was simulated for unsteady flow analysis in terms of dam failure and non-failure cases. For the parameter calibration, observed data of Jeonkok station were used and roughness coefficient was applied to simulation model. The result of the peak discharge difference was 2,696 to $1,745\;m^3/sec$ along the downstream between dam failure and non-failure and also peak elevation of water level showed meanly 0.6m difference. Those results of these studies show that dam failure scenarios for the unknown failure time and duration were rational because most results were coincident with observed records. And also those results and procedure could suggest how and when dam failure occurs and downstream unsteady flow analyzes.

TDOA Based Moving Target Velocity Estimation in Sensor Network (센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정)

  • Kim, Yong Hwi;Park, Min Soo;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames (불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용)

  • Yang Young-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.

A Study on the Relative Positioning Technology based on Range Difference and Root Selection (신호원과의 거리 차이와 실근 선택 알고리즘을 이용한 상대위치 인식 기술 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.85-91
    • /
    • 2013
  • For location based service and context awareness services, accurate indoor positioning technology is essential. The TDOA method that uses the range difference between signal source and receivers for estimating the location of the signal source, has estimation error due to measurement error. In this paper, a new algorithm is proposed to select the real root among calculated roots using the range difference information, and the estimated position of the signal source shows good accuracy compared to the existing method.

Hybrid TDOA/AOA Localization Algorithm for GPS Jammers (GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계)

  • Lim, Deok Won;Kang, Jae Min;Heo, Moon Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • For a localization system, the TDOA (Time Difference of Arrival) measurement and AOA (Angle of Arrival) measurement are often used for estimating target's positions. Although it is known that the accuracy of TDOA based localization is superior to that of AOA based one, it may have a poor vertical accuracy in bad geometrical conditions. This paper, therefore, proposes a localization algorithm in which the vertical position is estimated by AOA measurements and the horizontal one is estimated by TDOA measurement in order to achieve high 3D-location accuracy. And this algorithm is applied to a GPS jammer localization systems because it has a large value of the DOP (Dilution of Precision) when the jammer is located far away from the system. Simulation results demonstrate that the proposed hybrid TDOA/AOA location algorithm gives much higher location accuracy than TDOA or AOA only location.

A study on the Anti-Collision of RFID system using Instruction Code Sufficiency (명령 코드 충족 알고리즘을 이용한 무선인식 시스뎀의 데이터 충돌 방지에 관한 연구)

  • 강민수;이동선;이기서
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6B
    • /
    • pp.544-552
    • /
    • 2003
  • This paper suggests an instruction code sufficiency algorithm preventing data collision when multiple transponders attempt to connect in the radio frequency identification system. Conventional time domain procedure generates unconditional collision. On the other hand, this algorithm prevents data collision by transmitting data when it meets instruction code. When multiple transponders are transmitting data coincidently, they exploit desired data with using difference of arrival time generated by recognition distance, respectively. As a result of simulation, utilizing the wireless recognition system, adopting the suggested algorithm, operating in 13.56MHz frequency band, it verify that there is Anti-collision and data loss by ensuring transmission time difference of one bit by adopting this algorithm.