• Title/Summary/Keyword: and Three-point method

Search Result 2,136, Processing Time 0.037 seconds

THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF THREE-POINT p-LAPLACIAN BOUNDARY VALUE PROBLEMS WITH ONE-SIDED NAGUMO CONDITION

  • Zhang, Jianjun;Liu, Wenbin;Ni, Jinbo;Chen, Taiyong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.209-220
    • /
    • 2007
  • In this paper, the existence and multiplicity of solutions of three-point p-Laplacian boundary value problems at resonance with one-sided Nagumo condition are studied by using degree theory and upper and lower solutions method. Some known results are improved.

A study on the modified hole-drilling method for determining residual stresses (천공법에 의한 잔유응력 측정방법의 개선에 관한 연구)

  • 왕지석;김동철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 1983
  • In general, for measuring residual stresses in plane stress state, two principal stresses {\sigma}_1 , {\sigma}_2$ and their directions .theta., should be determined. Naturally, for deciding three unknowns ${\sigma}_1, {\sigma}_2, ${\theta}$-three informations are necessary and therefore three strain gages are required for determining residual stresses at one point. In this paper, we tried to measure the residual stresses of one point with only two strain gages by drilling twice the hole of different diameters at the point and by detecting relaxation strains for each hole-drilling. We present also the formulas for determining the residual stresses from relaxation strains detected by strain gages in each hole-drilling. We carried out experiment, determining principal stresses and their directions of specimens applied specified uniform stress, and compared experimental results with the values calculated by formulas presented in this paper. The values calculated by formulas presented in this paper are always a little greater than the experimental results.

  • PDF

Carrier Based LFCPWM for Leakage Current Reduction and NP Current Control in 3-Phase 3-Level Converter (3상 3-레벨 컨버터의 누설전류 저감과 NP 전류 제어를 위한 캐리어 기반 LFCPWM)

  • Lee, Eun-Chul;Choi, Nam-Sup
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.446-454
    • /
    • 2022
  • This study proposes a carrier-based pulse width modulation (PWM) method for leakage current reduction and neutral point (NP) current control in a three-phase three-level converter, which is a carrier-based PWM version of the previously proposed low-frequency common mode voltage PWM. Three groups of space vectors with the same common mode voltage are used. When the averaged NP current needs to be positive or negative, the specific groups are employed to produce low-frequency common mode voltages. The validity of the proposed PWM method is verified through experiments.

Study on the effect of 3 point belt on chest compression

  • Kim, Gyoung-Yong;Yang, Hyun-Mo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • This study suggested a method to increase the quality of chest compressions in patients with cardiac arrest during transport. When providing cardiopulmonary resuscitation to a cardiac arrest patient in the pre-hospital phase, the quality of chest compressions should be improved by using a three-point fixed belt to the ambulance. Because the quality of the chest compression was increased when the 119 paramedic wears a 3-point fixed belt in addition to the chest compression method. Also, paramedics are less likely to be at risk. Therefore, if a 3-point fixed belt is worn in an ambulance during transport, 119 paramedics will be able to secure safety and provide high-quality chest compressions to cardiac arrest patients.

A Two-stage Stochastic Programming Model for Optimal Reactive Power Dispatch with High Penetration Level of Wind Generation

  • Cui, Wei;Yan, Wei;Lee, Wei-Jen;Zhao, Xia;Ren, Zhouyang;Wang, Cong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The increasing of wind power penetration level presents challenges in classical optimal reactive power dispatch (ORPD) which is usually formulated as a deterministic optimization problem. This paper proposes a two-stage stochastic programming model for ORPD by considering the uncertainties of wind speed and load in a specified time interval. To avoid the excessive operation, the schedule of compensators will be determined in the first-stage while accounting for the costs of adjusting the compensators (CACs). Under uncertainty effects, on-load tap changer (OLTC) and generator in the second-stage will compensate the mismatch caused by the first-stage decision. The objective of the proposed model is to minimize the sum of CACs and the expected energy loss. The stochastic behavior is formulated by three-point estimate method (TPEM) to convert the stochastic programming into equivalent deterministic problem. A hybrid Genetic Algorithm-Interior Point Method is utilized to solve this large-scale mixed-integer nonlinear stochastic problem. Two case studies on IEEE 14-bus and IEEE 118-bus system are provided to illustrate the effectiveness of the proposed method.

The alternative Method to Finish Modular Exponentiation and Point Multiplication Processes

  • Somsuk, Kritsanapong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2610-2630
    • /
    • 2021
  • The aim of this paper is to propose the alternative algorithm to finish the process in public key cryptography. In general, the proposed method can be selected to finish both of modular exponentiation and point multiplication. Although this method is not the best method in all cases, it may be the most efficient method when the condition responds well to this approach. Assuming that the binary system of the exponent or the multiplier is considered and it is divided into groups, the binary system is in excellent condition when the number of groups is small. Each group is generated from a number of 0 that is adjacent to each other. The main idea behind the proposed method is to convert the exponent or the multiplier as the subtraction between two integers. For these integers, it is impossible that the bit which is equal to 1 will be assigned in the same position. The experiment is split into two sections. The first section is an experiment to examine the modular exponentiation. The results demonstrate that the cost of completing the modular multiplication is decreased if the number of groups is very small. In tables 7 - 9, four modular multiplications are required when there is one group, although number of bits which are equal to 0 in each table is different. The second component is the experiment to examine the point multiplication process in Elliptic Curves Cryptography. The findings demonstrate that if the number of groups is small, the costs to compute point additions are low. In tables 10 - 12, assigning one group is appeared, number of point addition is one when the multiplier of a point is an even number. However, three-point additions are required when the multiplier is an odd number. As a result, the proposed method is an alternative way that should be used when the number of groups is minimal in order to save the costs.

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

Maximizing the Workspace of Optical Tweezers

  • Hwang, Sun-Uk;Lee, Yong-Gu
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.162-172
    • /
    • 2007
  • Scanning Laser Optical Tweezers(SLOT) is an optical instrument frequently employed on a microscope with laser being delivered through its various ports. In most SLOT systems, a mechanical tilt stage with a mirror on top is used to dynamically move the laser focal point in two-dimensions. The focal point acts as a tweezing spot, trapping nearby microscopic objects. By adding a mechanical translational stage with a lens, SLOT can be expanded to work in three-dimensions. When two mechanical stages operate together, the focal point can address a closed three-dimensional volume that we call a workspace. It would be advantageous to have a large workspace since it means one can trap and work on multiple objects without interruptions, such as translating the microscope stage. However, previous studies have paid less consideration of the volumetric size of the workspace. In this paper, we propose a new method for designing a SLOT such that its workspace is maximized through optimization. The proposed method utilizes a matrix based ray tracing method and genetic algorithm(GA). To demonstrate the performance of the proposed method, experimental results are shown.

Three-level Inverter Direct Torque Control of Induction Motor Based on Virtual Vectors

  • Tan Zhuohui;Li Yongdong;Hu Hu;Li Min;Chen Jie
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.369-373
    • /
    • 2001
  • Multilevel inverter has attracted great interest in high-voltage high-power field because of its less distorted output. In this paper, a direct torque control (DTC) technique based on a three-level neutral-point-clamped (NPC) inverter is presented. In order to solve the intrinsic neutral-point voltage-balancing problem and to obtain a high performance DTC, a special vector selection method is introduced and the concept of virtual vector is developed. By using the proposed PWM strategy, a MRAS speed sensor-less DTC drive can be achieved without sensing the neutral-point voltage, The strategy can be verified by simulation and experimental results.

  • PDF

A Study on Proper Location of Welding Defect in Three Point Bend Testing with MDPE Pipe

  • Lai, Huan Sheng;Yoon, Kee Bong;Kil, Seong Hee
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Welding defects affect the performance of welded pipe joints. In this study, a three point bend test of welded steel and medium density polyethylene (MDPE) pipe joints with defects of various defect locations and defect materials was studied using the finite element method. The defect was assumed to be located at 12 o'clock, 3 o'clock or 6 o'clock direction. The results showed that pipes failed more easily on the compression side due to stress or local buckling. The air defect was more dangerous than the steel defect if the defect was located in the compression side; otherwise, the defect material effect on the integrity of pipes was ignorable. It is argued that the integrity of pipes with defects in the compression side is weaker than that in other regions, and the defect should be located in the compression side or the 12 o'clock position in the three point bend test to maximize the effect of defect existence on the pipe structural integrity.